
AD-A243 873IIBI i Ni 11111111 B111 111 /
AFIT/DS/ENG/91-0\

DTIC
S ELECTE

JAN 06 19921D

Multi-Layered Feedforward Neural Networks for Image Segmentation

DISSERTATION

Gregory L. Tarr
Captain, USAF

AFIT/DS/ENG/9 1-01

92-00046

Approved for public release; distribution unlimited

92 1 ' 5 053



AFIT/DS/ENG/91

Multi-Layered Feedforward Neural Networks for Image Segmentation

DISSERTATION

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements tor the Degree of

Doctor of Philosophy

Gregory L. 'farr, B.S.E.E, M.S.E.E.

Captain, USAF

December 1991

Approved for public release; distribution unlimited



AFIT/DS/ENG/91

Multi-Layered Feedforward Neural Networks for Image Segmentation

Gregory L. Tarr, B.S.E.E, M.S.E.E.

Captain, USAF

Approved:

Th0.,kJG. W7 A/bdf_

Accesiorf F-r

Oc DL T 2 ,I

J. S. Przemieniecki -..

Dean, School of Engineering By . ..

Di ' 't

Dist S,: :.

AIi]



AFIT/DS/ENG/91

Abstract

Artificial neural network image segmentation techniques are examined. The biologi-

cal inspired cortex transform is examined as a means to preprocess images for segmentation

and classification. A generalized neural network formalism is presented as a means to

produce common pattern recognition processing techniques in a single iterable element.

Several feature reduction preprocessing techniques, based on feature saliency, Karhunen-

Lobve transformation and identity networks are tested and compared. The generalized

architecture is applied to a problem in image segmentation, a tracking of high-value fixed

tactical targets.

; A generalized architecture for neural networks is developed based on the second

order terms of the input vector. The relation between several common neural network

paradigms is demonstrated using the generalized neural network. The architecture is

demonstrated to allow implementation of many feedforward networks and several prepro-

cessing techniqueswl

<Because of the limited resources and large feature vectors associated with classifi-

cation problems, several methods are tested to limit the size of the input feature vector. A

feature saliency metric, weight saliency, is developed to assign relative importance to the

individual features. The saliency metric is shown to be significantly easier to compute than

previous methods. Several neural network implementations of identity networks are tested

as a means tc reduce the size of the feature vectors presented to classification networks. (

Using the generalized approach, a scanning receptive field neural network is de-

veloped for image segmentation. The scanning window technique is used to segment

sequential images of high value fixed targets (dams, bridges and power plants). The ar-

chitecture is implemented as a tracking mechanism. The implementation resulted in an

improved method for target identification and tracking, using neural networks as a front

end.
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Preface

WILLIAM SHAKESPEARE 1564-1616

Is this a dagger which I see before me, The handle toward my hand? Come, let me clutch

thee: I have thee not, and yet I see thee still. Art thou not, fatal vision, sensible to feeling

as to sight? Or art thou but a dagger of the mind, a false creation, proceeding from the

heat-oppressed brain?

MACBETH Act Two, Scene One

The difference between mysticism and scholarship can be confused by careless

observation of the natural world. For centuries man has observed nature in hopes of

solving problems that people can solve but machines cannot. Computer vision is one of

these problems.

For example, simple visual classification problems solved by any dog, cat or evea

pigeon, are far beyond the reach of computer vision systems. We sometimes look to

natural objects in hopes of finding solutions to these difficult problems. Mysticism is

looking at a natural object and seeing an illusion, while scholarship is looking at an object

and understanding what is there.

Investigation of biological systems, in hopes of finding inspiration requires a great

leap of faith. Does the inspiration follow careful observation, or does the inspired suffer

from a false creation, proceeding from the heat-oppressed brain? A working system is

not proof that the system is based on a biological model. The difference is the difference

between inspiration and understanding.

Novel, new technologies allow the perception to endure that present-day scienc'e is

beyond mixing mysticism and scholarship. Biological information processing is based on

a massively parallel interconnection of small computation elements called neurons.

xii



The sequential processing of information by digital computers probably will never al-

low real-time processing speech or image information for anything more than toy problems.

Understandably, many have turned to biological inspired, parallel models of computation.

The possibility that man will ever understand any more about himself than a machine

understands about itself seems unlikely. Still, it may be worth the effort to look into the

biological models to find efficient algorithms for information processing. Keep in mind

that the inspiration may have little or nothing to do with the biological process. The results

of these efforts may simply be new mysticism, with new priests and hi-tech crystal balls.

The point is simply that presently, there appears to be nothing neural about artificial

neural nets, but they seem to be useful anyway.

I wish to acknowledge my indebtedness to my committee chairman, Dr. Steven K.

Rogers, without whose tireless support and enthusiasm, this work could not have been

successful. Also, I would like to thank my committee members: Dr. Matthew Kabrisky,

Dr. Mark E. Oxley, and Dr. Paul Morton whose encouragement and support were always

welcome. As with any computer intensive project a great deal c,' the credit goes to those

who keep the machines running, for which I thank the system engineers, Dan Zambon and

Bruce Clay and David Doak. Also, a special thanks goes to those who have come before,

upon which much of this work was based, Dr. Dennis Ruck has been a source of vast

technical expertise and inspiration. Capt Kevin Priddy has contributed a great deal to this

project for which I am especially indebted.

Gregory L. Tarr
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Multi-Layered Feedforward Neural Networks for Image Segmentation

L Introduction

The United States Air Force and the Department of Defense have long been inter-

ested in the problem of autonomous guidance for conventional weapons. Such systems,

sometimes called "fire and forget", allow weapons to choose their own target and guide

themselves without human intervention. Many technical problems must be solved before

such smart weaponts can be effective. This research looks at some of the fundamental

problems associated with autonomous guidance.

Solutions to these problems are dependent upon such fields as computer vision and

pattern recognition. Computer vision algorithms use a hierarchical analysis of imagery to

convert gray scale pixel information into targeting coordinates. The purpose of this dis-

sertation is to examine a class of pattern recognition problems called image segmentation.

The particular problem being studied is to take a series of images, segment out the objects

of interests and select a target based on that segmentation.

The difference between this effort and previous efforts is the use of an artificial neural

network (ANN) in the front end of the vision system. ANN's allow a targeting computer

to be programmed without long sequences of instructions. Instead, endless ifthen,else

constructs are replaced with a massively parallel distributed processing engine. The

processing engine learns by examples, much the way humans learn. The ANN is given

examples of different classes and learns how to distinguish between them.

This dissertation has resulted in the development of a software environment for

neural network research, a deeper understanding on how artificial neural networks make

decisions, and a new method for targeting high-valued fixed targets in digital imagery.

The software environment accepts a wide range of data sets to be evaluated for neural



network implementations. Building the environment resulted in new information con-

cerning exactly how neural networks make decisions, and what can be done to improve

and simplify them. The environment was applied to a specific set of sequential imagery

of tactical targets and a neural network solution was found for converting the image into

target coordinates.

The next section will discuss the background material which relates target identifi-

cation and tracking, the focus of this effort, to conventional patteni recognition schemes.

1.1 Historical Perspective

1.1.1 Pattern Recognition Identification and classification of targets from elec-

tronic imagery is a difficult problem because the vast amounts of data involved. A single

image can contain millions of bits of information (pixels), all of which need to be processed

in a systematic way. Processing images for pattern recognition is a threefold problem.

First, the targets must be separated from the background or segmented. The first stage is

the most difficult part of the problem. Second, the data must be reduced to a manageable

size, commonly called vector quantization, or feature extraction. This reduction in data

is possible by selecting specific features of a pattern and using oniy these features for

classification. Feature extraction is the process of taking meaningful measurements of

the segmented blob. Good pattern recognition requires good features. The final task is

classification of the vectors. The output of the classification phase is an identified object

with its location. Figure 1 illustrates the process.

Pattern recognition and neural network literature is filled with work describing the

use of neural networks for the final stage, or back-end, classification for recognition

tasks. The back-end takes the extracted features and makes the classification. This work

investigates the use of neural networks for the preprocessing (front-end) step in image

understanding.

The first stage is the most difficult part of the problem.

2
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Figure 1. Pattern Recognition Processes.
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1.1.2 Pattern Recognition and Neural Networks. Ruck (36) uses neural networks

to classify tactical targets taken from infrared and laser range data. He extends Rogge-

mann's work (34) in which he classified similar data using conventional Bayesian tech-

niques in a multi-sensor fusion approach. Neuial networks have been used in place of

conventional classifiers for sonar return identification(14), speech recognition(26), and

radar signal identification (50), to name a few.

Each of these tasks requires separation of exemplar patterns into classes. This type of

system, sometimes called, a "neural network back-end", is a substitute for a conventional

classifier. Front-end analysis, or segmentation of the target from its background and gen-

erating feature vectors, has traditionally depended on heuristic, or rule-based approaches.

Algorithms based on neural network techniques may hold some computational advantage

over conventional methods.

Neural networks can be considered a blackbox from the designers point. As shown in

Figure 2, a feature vector is presented to the input of the neural network and a classification

is generated at the output. The literature shows neural network back-ends work relatively

well. In fact, Ruck(38) has shown that in training a neural network, using a mean squared

error criterion, the algorithms attempt to minimize the difference between a neural network

and a conventional Bayes optimal classifier. He shows that neural networks can be used

interchangeably with Bayesian classifiers.

Still, a neural net back-end attacks only the least demanding part of the problem. A

better approach might be to use neural networks for the front end image analysis. Neural

networks could be used not only to classify the feature vectors but compute them from the

raw imagery as well.

Using a neural network for the front end is not a new idea. Many have used raw

pixel data as feature vectors. Le Cun (6) suggests that front end processing of imagery

is not possible yet. His work in classifying handwritten characters suggests that this

approach is not extensible beyond the most simple problems. While simple problems such

as identification of ships at sea, or aircraft in clear air can be solved with automatic image

4



Tank Truck Jeep

Feature Vector

Figure 2. Neural Network Pattern Recognition. The diagram shows the general form
of a neural network. The feature vector is entered at the bottom. The lines
represent weights connecting the input to the hidden layer(s). The nodes in the
hidden layer contain a summation of the input values times the weight followed
by the application of a non-linear function. The hidden node values are passed
in a similar fashion to the output. The classification is made by selecting the
output node with the highest value. The output layer contains one node for
each output class.

5



recognition technology, more complex problems cannot. For example: moving or fixed

targets in cluttered backgrounds are still the subject of early exploratory development and

probably will require a "man in the loop".

Advances in computer vision systems and sensors have driven the need for in-

creasingly efficient image analysis. Infrared cameras, photo reconnaissance systems, and

image guided weapons generate information at rates too explosive to handle with current

hardware and algorithms. The problem is compounded by the coming of multi-sensor

systems.

This effort begins by examining biological image processing in order to develop and

test algorithms that may solve the segmentation problem.

1.1.3 Computer and Biological Vision Computer vision is the process that com-

bines information from one or several sensors, previously acquired models of scene content,

and world knowledge to construct a model of the sensor's environment. To be useful, the

model must be complete enough to perform a given task.

Often, the task might be as simple as deciding if one view of a scene is different

from a previous image, a problem common to overhead reconnaissance systems. Similar

analysis can be used to find motion in an image. Short term motion could detect a vehicle

moving across the sensor's field of view. Longer term motion, (such as from satellite

imagery) might discover increased activity at a military site or detect patterns of growth

for environmental monitoring and urban planning.

The goal of computer vision is to take a series of images, and by some means,

construct a model of the environment around the sensor. This process begins by decom-

posing the image into identifiable regions. For examples, an image could be decomposed

into target or background, then targets divided into tank, truck, jeep, and so on. Image

decomposition is still largely an unsolved problem. How can the separate objects in an

image be recognized and classified? Consider the problem of robotic navigation. Given a

6



preplanned description of the environment where the robot is expected to operate, can the

vision system locate itself within the memory representation of that description.

This dissertation will focus on the early aspect of computer vision, the neural network

front-end. Pixel information (gray scale intensity) is used to find points of interest, segment

out objects and classifying the objects. Associating an object with a coordinate is all that

is necessary to place a sensor in its environment. The initial decomposition provides the

basis for placing the sensor. This process, sometimes called pre-attentive vision, may be

the most difficult part of the problem.

Image analysis begins by picking out the areas of interest for special attention. These

areas can be given special attention for picking out specific objects. Segmentation is the

process of separating objects of interest from their background. The procedure involves

identifying each pixel of an image as belonging to a specific category. For example

background/object or target/non-target. The feature extraction process makes meaningful

measurements of the object. The classification step uses the features extracted in the first

step to identify the objects. A model of the environment is constructed by combining the

two dimensional coo3rdinates of the identified objects into an overall three dimensional

model.

Solutions to these problems may lie in algorithms and architectures which mimic

the biological visual system. Artificial neural networks have already proven effective for

tactical target recognition provided the preprocessing step, image segmentation and feature

extraction, are performed by conventional methods (36, 34, 48).

The purpose of this effort will be to examine the use of neural networks for the

fundamental problems of computer vision, image segmentation and feature extraction, the

so called pre-attentive vision problem (21).

1.1.4 Artificial Neural Networks for Image Analysis. Artificial neural networks

(ANNs) have been used in pattern recognition systems for some time. Feedforward neural

networks have been shown to be effective classifiers provided the features applied to the

7



network are sufficiently separable in the decision space. Still, selectioni of the features

from digital imagery is usually performed using a heuristic approach.

While little of the biological visual system is understood, its examination may offer

algorithmic approaches to machine vision. Biological vision may provide insight on

how to solve the most difficult aspects of image understanding. Lateral inhibition in the

receptor cells in the retina provides the first steps of automatic gain control. The Ln(Z)

transformation of the retinal image to the visual cortex provides scale and rotation invariant

processing and provides a means to detect motion with respect to background. Other visual

processes provide the solution to generalized object recognition.

To pick an object out of an image, some questions might be asked:

I. Does local spatial information alone characterize an object? How should the infor-

mation be presented to a neural network? Do local two-dimensional Gabor filters

represent an efficient compromise of spatial and spectral data. How are the filter

components selected for object identification?

2. Biological vision systems are able, by means of several independent systems, to

partition the world into generalized blob type objects. Can machine algorithms

be devised to mimic the ability of the visual process to find boundaries between

objects, and associate those boundaries with specific texture areas of a scene? Can

the process allow for ambiguous illumination and intermittent boundaries?

3. Conventional image segmentation involves classifying each pixel into subpopula-

tions or categories. In general, this is a difficult task as the intensity of the image may

not be a good representation of the underlying physical variation of the scene. What

transformation of the intensity information could facilitate the pixel classification

process?

8



1.2 Problem Statement and Scope

Problem Statement. To investigate and evaluate image segmentation algorithms

with regard to design, training and performance of target detection and tracking systems.

The result of that research will be applied to the design of an end-to-end automatic target

detection and tracking system.

Scope. Source data for the system will include tactical targets, infrared (IR) imagery and

sequential target tracking imagery.

1. Feature Vector Preprocessing Techniques: Evidence exists to suggest that data

processing in biological neural networks is not based strictly on the inputs from

the sensors. Sometimes, the processing is performed on some linear (or nonlinear)

combination of the data. For example, a Fourier transformation is a simple linear

combination of weighted sums of a time delayed, or spatially shifted signal. While

there is little reason to believe either signal is better for learning or classification,

biological systems use both mechanical transforms, for example the retina to cortex

transformation (or Ln (Z)) and computational transfoims like Gabor filtering. The

Ln(Z) transform is computed by the physical placement of the receptors in the retina.

Gabor filters are computed by taking a weighted surn of adjacent receptors. The

first step will be to examine the relationship of simple transforms on neural network

classifiers.

2. Foveal Vision Preprocessing: A central feature of biological vision processing is

the spatial transformation preprocessing provided by the placement of the rods and

cones in the retina. The increased dersity of the receptor cells in the fovea combined

with the mapping of the ganglion cell outputs onto the visual cortex, provide an

approximate Ln(Z) transformation of the retina data. The objective is to investigate

the use of the foveal transforms as means to reduce the amount of data required for

processing.

9



3. Machine Implementations of Algorithms: Evidence that processing of complex

imagery can be performed in real time is provided by our own existence and other

biological vision systems. Applying biological paradigms to electronic systems

will impose constraints some practical and some impossible. The objective is to

determine which types of algorithms are suited to hardware implementation.

The research analysis consists of four phases:

1 Develop an image processing and neural network simulation environment to test

specific approaches.

2. Investigation of transformations on scene objects for segmentation.

3. Investigation of feature vector preprocessing algorithms.

4. Application of these techniques to a tactical target image processing task.

1.2.1 The NeuralGraphics Neural Network Simulation Environment The Neural

Graphics system was developed to test the application of general data sets to neural network

solutions. The difference between this system and conventional research software is the

additional effort put into the user interface to make the system a general purpose research

tool for a variety of user requirements.

1.2.2 Preprocessing Feature Vectors for Classification The investigation will be-

gin with analysis of feedforward neural network classifiers using hard boundary decision

region problems. Using two dimensional random data divided into arbitrary disjoint

decision regions, biologically inspired algorithms will be tested to determine if the clas-

sification process is facilitated. In addition, alternative transforms will be examined to

determine if the complexity of a problem can be reduced.

1.2.3 Image and Feature Vector preprocessing The next area of study is the use of

preprocessing techniques to reduce the complexity of the "lassification "back-end". Fourier

10



techniques have been used for some time. Cabor filters have been used by Daugman (8)

and others for compression and image coding, but not for classification. Evidence of Gabor

processing in biological vision systems is demonstrated by Jones and Palmer(20).

1.2.4 Local Area Transforms for Target Segmentation The second phase of the

investigation will examine local area transformations of sequential imagery. Various

transformations will be applied to a small region of a larger image. The transformed

values will be used as input to a neural network classifier. The object will be to determine

how geometric primitives can be identified from a local area transformation.

1.3 Dissertation Organization

This dissertation will be organized as follows:

* Chapter !. Introduction and overview. Problem statement. Description of the types

of problems under consideration.

* Chapter II. Use of vision and coordinate transformations for feature extraction and

classification on simple problems.

* Chapter Il. Relations between common neural network paradigms. Development

and description of generalized neural networks.

* Chapter IV. Feature selection and node saliency. Development of the Karhunen-

Lo~ve , and Gram-Schmidt networks, with a comparison to identity nets.

* Chapter V. Application of the generalized net to problems in target segmentation

and tracking,

9 Chapter VI. Conclusions and Recommendations.

11



II. Cortex Transforms for Pattern Recognition and Image Analysis

2.1 Introduction

This chapter examines the use of coordinate transforms for image preprocessing

to reduce the complexity of the decision space. Two transformations are examined: the

cortex transform and the hyperbolic transform. The first image data transform examined

is sometimes called a cortex transform or more correctly, the Ln(Z) transform. Cortex

transforms are suggested by the image transform from the mammalian retina to the striate

cortex. The hyperbolic transform was suggested by a priori knowledge of the problems.

Cortex transforms can be constructed by placement of the photoreceptors in a focal plane

array, similar to the retinal placement of photoreceptors. The cortex transform is compared

to the hyperbolic transfonn, which is a two dimensional degeneration of conic basic

function presented in Chapter III. Both of these transforms reduce the complexity of the

decision space for a wide class of problems.

Ruck (39) showed that neural network models that minimize the mean squared error

norm, approximate a Bayes optimal discriminator. For purposes of this experiment, neural

networks and Bayes' analysis are considered equivalent. Improving the training times for

a neural network problem is assumed to indicate a less complex decision space. If the

neural network can partition the decision space faster, it suggests that the preprocessing is

beneficial to the classification problem.

Three problems are examined to test the advantages of cortex transforms as well

as other data transforms. The first two problems are two dimensional decision region

problems. The last problem is a character recognition problem for the handwritten example

of the first few letters of the alphabet.

2.2 The Cortex Transform

12
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Figure 3. The cortex transform is a two-dimensional conformal mapping which takes
the intensity of an image at a point (x,y) and maps that intensity to a point in
(In(p), 0) space.

To process spatial and temporal information in the cortex, biological vision systems

have developed a front-end preprocessing scheme to reduce the computational complexity

of the image analysis scheme. After the image falls on the retina, successive transfor-

mations occur between the retina, the lateral geniculate nucleus (LGN), and the striate

cortex.

The stimuli provided by motion, depth, and color are processed in a parallel and

partially independent manner. Of particular interest here are the algorithms used to process

the perception of form. A coordinate transformation between the retina and striate cortex

provides a cortical representation of information that may allow the extraction of reasonable

features. The transformation can be expressed as a coordinate conformal mapping from

the x,y plane to a log p, 0 representation. Figure 3 shows the coordinate transform for the

x,y plane to the p,O plane. p = Ln(Z + a). Commonly called the Ln(Z)' transformation,

the cortex transformation is similar, except that the discontinuity at the origin is removed.

In software, all that is required, is to ensure the radius is never less than one. This is best

accomplished by using a scale such that the width of one pixel is equai to one. The cortex

'The transformation is similar to the conformal ma.in Ln(Z) where,(Z = x + iy), where i is the square
root of-1. The mapping is defined as p = z-I = V/x- +y 2 and0 = i tan 1 z = tan-l(y)(41)
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Figure 4. Cortex Coordinate Transformation of an Image.

transform then is expressed as Ln(Z+a) where a is a small enough number to ensure the

argument of the function is never less than one. Consider the images in Figure 4. The

image on the left is a standard unscaled and unrotated image. The image on the right uses

a coordinate transformation similar to that found in the visual cortex.

Since the visual system uses a coordinate transform to improve the ability to recog-

nize objects, the question might be asked if a coordinate transformation might improve the

separability of a general class of hard boundary decision region problems. Two problems

were selected, the first is an exclusive-or problem with four disjoint decision regions. The

second problem is a mesh problem with three concentric circles forming more complex

decision regions as shown in Figure 5.

The NeuralGraphics (44) neural network simulator is used to simulate the problem.

When the network is initialized with random weights the total error is measured with respect

to every input exemplar. Thereafter at every display cycle, typically 1000 iterations, the

total error is measured again and results are plotted. Figure 6 is the first of a number of

NeuralGraphics screen displays which presents status information as the network trains.

The output map, in the lower right, is a display of the entire input space and how the

neural network would classify each area. Each color represents a particular class. The

14
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XOR Problem Mesh Problem

Figure 5. The Exclusive-Or and the Mesh Problem.

map covers the region starting with (-1,-i) in the lower left hand comer up to (1,I) in the

upper right.

Node maps, the four square regions on the left (one for each hidden layer node), are

similar to the output maps except that the display maps the output of a node in terms of

its gray scale set between zero and one. The network topology is displayed, showing the

number of layers, the number of nodes per layer and the connecting weights. The value of

the weights are displayed in gray scale according to the dynamic range scale displayed to

the left of the net.

In addition to the error history, general statistics are displayed in the lower right

hand comer. A classification of right means that the output of the node corresponding to

the correct classification has a value of 0.8 or above and all others are below 0.2. For an

exemplar to be classified good, the only criterion is that the node with the highest value

corresponds to the correct output class.

The neural network solves a problem by providing a mapping from a set of inputs,

or feature vector, to an output vector. The output vector is the classification of the input

vector. A coding scheme of some kind is necessary to translate the floating point values of

the output nodes into something meaningful to the user. The NeuralGraphics system uses

one node for each output class. A value near one indicates that the network has determined

the input vector is a member of the class associated with that node. A value near zero

15



Figure 6. XOR Problem Screen Displays.
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indicates a low probability that the input vector is a member of the node's associated class.

2.3 The Exclusive-Or Problem.

Evaluation of a neural network classification system usually begins with the analysis

of a well understood problem. Here, an exclusive-or decision space with hard boundaries

(no undefined space between classes) is used for the initial tests. The hard boundary

exclusive-or problem is useful because it is a non-trivial, yet manageable problem. Also, it

contains many problems associated with real data classification. For example, the problem

contains multiple disjoint decision regions as well as an ambiguous region along the

boundary between classes. The region is ambiguous because at the boundary, an exemplar

could be either class. Ambiguous regions (or data points) prevent 100.00 percent accuracy

from being achieved. The problem was implemented on the neural network simulator by

creating four input data points, (1,1), (-1,1), (-1,-1), and (1,-1), two for each class. Each

time a data point is presented to the network, a random value was added to each feature.

For this problem the random value is a random number with a uniform distribution on

the interval (-1,1). Given enough samples, the random value allows every point in the

decision space to be classified into one of the two classes.

In Figure 6, the upper screen display was created with no transform of the input data.

The window in the upper right corner of the screen displays the reduction of total error

over time as the network trains. Total error is the total of the mean squared error values

for each output node for the entire data set. The total error has fallen from 7.1 to 3.149

while most of the inputs are being correctly classified, the boundaries are soft as indicated

by the value for right 75.0 percent correct of 1000 tries.

On the lower screen, a cortex transform is applied to the data. The total error falls

off a little faster as shown in the error history. Also the total accuracy is greater, and the

boundaries are sharper as indicated by the greater accuracy (86.8 percent right).

To investigate the general utility of transforming the data, another transformation is

also considered. In addition to the x,y components, another term, the product of :r and I/
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Figure 7. Training Results for the XOR Problem.

is added as a third element of the feature vector, forming a type of hyperbolic transform.

As discussed in Chapter III this transformation turns out to be a special case of the conic

basis function network. The improvement in training times and accuracy is significant.

Each screen display represents only one example of the search down the error surface.

Such evidence is anecdotal at best, so a statistical approach was taken to ensure accurate

results.

The exclusive-or problem was run 100 times for each of the data transforms. At every

display cycle, (1000 training cycles) the total error was measured. The error measurement

was taken as the sum of the total error for 1000 random samples of the decision region.

The results are shown in Figure 7.

Notice that both the slope of the error, and the final error is better for each of

the transforms. The reduction was small for the cortex transform and significant for

the hyperbolic transform. The significant reduction for the hyperbolic transform can be

explained in the truth table of the data shown in Table 1. The hyperbolic approach reduced

the complexity of the problem enough that it could be solved using only a single layer

network. The data transformation allows for the separation of the two classes in a decision

space with a single hyperplane. The decision space for the three dimensional problem

is actually less complicated than the original two dimensional space problem as shown
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in Table 1. The two dimensional space problem contains four disjoint learning regions,

which can only be partitioned with (at least) two hyperplanes. Table 1 shows the product

of x and y is positive for class one and negative for class two. Thus one hyperplane can

separate the data. The equation of that hyper plane would be zy = 0.

I1 Sign of Input jj
x y x.y Class
+ + + 1
+ - - 2

-+ - .2

- + 1

Table 1. Exclusive-Or Problems. The table indicates the disjointness of the learning
regions. Class one is defined as the case where x and y have the same sign.
Class two is where x and y have different signs. These constraints can be met in
two ways for both cases. But by taking the product of x and y, only one possible
region exists for each class. Class one is the case where xy is positive and class
two is the case where ry is negative.

2.4 The Mesh Problem

The mesh problem is another hard boundary test problem used to test the complexity

of the decision region with the augmented feature vector. The decision region consists of

three concentric circles each with the right and left half of the cirle representing one of

four decision regions. The training data was generated by randomly sampling the decision

space 1000 times, then classifying by hand each point (See Figure 5). The network was

trained on those points. The network was tested by taking uniformly spaced samples of

the decision space and plotting the color coded response of the network in the lower left

window of the screen display. (See Figure 8).

Using the cortex transform, the experiment is conducted using first the untransformed

data. The results are shown in Figure 9. Next the net is trained using the transformed data.
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Figure 8. Mesh Problem Screen Displays. The graph at the upper right shows the
reduction of error over time during training. The square windows below the
hidden nodes are plots of the response of the hidden nodes for the entire
input space. Light values indicate a low response, dark values indicate a high
response. The map in the lower right is the networks best estimate of the output
class for that region of the input space.
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One run is made for the cortex transformed data, and one for the hyperbolic transformed

data. As shown in Figure 9, the improvement is significant using the cortex transform.

-- Total Error Total Accuracy
30 RW D,46

25No7m*
20 60

1540

10,2

5 10 15 20 25 30 5 10 15 20 25 30

Iterations (1000)

Figure 9. Mesh problem training results. For the mesh problem the cortex transform
performed better than either the actual values or the hyperbolic transform.

The hyperbolic transform improved training for the exclusive-or problem and the

cortex transform improved training for the mesh problem. The results appear problem

dependent. The next section will examine the use of the cortex transform for a problem

using real data.

2.5 Cortex Transforms for Handwritten Characiers.

No improvement in neural network paradigms is of any significance unless shown to

be useful in general applications. The application chosen here is that of identifying sing!e

handwritten characters from several subjects.

The characters were written using a mouse as the input device. The figure above

shows the characters and their cortex transforms. Most work has shown that pixels do

not make good feature vectors, and for that reason the low order Fourier components

were selected instead (29, 22). The feature vector then is composed of the 25 low order
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Figure 10. Handwritten letters with cortex transforms. Letters were scanned on a 64 by
64 pixel window. The image was transformed with a small circle at the origin
removed. 25 low order Fourier coefficients were used for neural network
classification.
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Figure 11. Character recognition plot of error reduction. The neural network learns
faster using the Fourier transform of the Ln(Z)(cortex transform) image of
the letters.
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magnitude components of the two dimensional transform of the cortex transformed image.

Ten samples of each of five characters were created for a training set of 50 exemplars.

The graphs in Figure 11 show the reduction of total error over time. The lower graph

represents the training set with a cortex transform on the input scene. This graph shows

faster training for the transformed data. Better training times indicate that the decision

space in the transform domain is less complex than in the original image. The experiment

with the hand written characters showed improved performance for this small problem.

The character reconstruction highlighted some c IF the problems inherent to this approach.

The problems came from the construction of the cortex transform. The discontinuity at

the origin caused a number uf problems.

2.6 Conclusion.

This chapter discusses the test of three data sets: the exclusive-or problem, the mesh

problem and the handwritten character recognition problem. Each data set was approached

using three preprocessing techniques: no input transformation, hyperbolic transformationx,

and cortex transformation. In each case the preprocessing improved the training times,

indicating a reduction in the complexity of the decision space.

The cortex transform, while improving training for the test cases, included a number

of special problems. In practice, the discontinuity at the origin causes thickening for lines

near the center of the field of view. In Figure 10 the pixels within a radius of five of the

center were set to zero otherwise the transformed image may or may not become mostly

black based on whether the line passed within five pixels of the origin. If the line happened

to miss the origin (like in the A, or B) half the image is black if not white.

Those pixels at the origin of the original image, account for 50 percent of the

transformed image, Biological systems overcome this weakness by increasing the density

of the photoreceptors in the center of the field of view. Implementing cortex transforms in

computer systems would require ,a com plex aspheric lens, or non-uniform sampling of the

focal plane. Holographic lenses may provide a solution to this implementation prob'em.
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The human brain contains as many as about 10,000,000,000 neurons. Ten percent

of them are thought to be dedicated to the visual system (23). The cortex transform may

require more interconnected computational units than would be practical in a machine

vision system.

More immediate results were derived from the hard boundary preprocessing exper-

iments. The first transform discussed, the hyperbolic transform, is a simple case of the

conic basis function network presented in Chapter III. The steeper slope in the learning

curve shown in Figure 7 indicates that adding the right additional terms can improve

training. Determining transforms which improve the performance is generally a matter of

heuristics. In practice, input transformations are a matter of adding a priori knowledge to

the classification problem.

The following chapter will adapt the hyperbolic transform to higher dimensional

data, which is a means of avoiding the search through all possible combinations of input

transformation functions by providing a general set of input transformations and letting

the neural network select which ones to use.

As shown by the graphs in Figure 7, different representations of the same information

to a neural network do not represent the same level of decision region complexity. This

section showed the complexity of a problem can be reduced by changing the representation

of the data without changing information content.

The next chapter discusses a generalized iiput transform of the input feature vector

to reduce the complexity of the learning space.
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III. Generalized Neural Network Architectures

This chapter presents a formalism for generalized feedforward neural networks. A

generalized architecture is necessary to allow a number of the techniques used in Chapter V

to be implemented using a singe iterable device. The previous chapter showed how higher

order terms can facilitate training times. This chapter will show how higher order terms,

and other preprocessing techniques can be generated in an artificial neural network using

"a standard perceptron-like element.

The architecture is capable of mapping many common neural network paradigms into

"a single architecture. Using an intrinsically iterable element, neural networks can be used to

compute common preprocessing techniques including Karhunen-Loive reduction, Fourier

and Gabor spectral decomposition and some wavelet techniques in addition to common

discriminant functions. By generalizing neural networks into a common framework, the

relationships between various neural network paradigms can be explained in a straight-

forward manner, as well as implemented in hardware.

The next section will introduce the generalized neural network node and describe

the network in terms of vector equations using a Cybenko type network. The nature of

discriminant functions used by backpropagation networks will be examined. The differ-

ence between the discriminant functions provided by common neural network paradigms

will be compared in terms of the gerneralized neural network node.

3.1 A Generalized Neural Network Algorithm

Figure 12 illustrates the neural network implementation of the Equation 1. A

generalized feedforward neural networks node can be represented by the matrix equation:

Zk = f( T dk. + k)(1)
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Figure 12. A Generalized Neural Network Input Node
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W represents the first order weights. A& represents a weight vector connected to

second order inputs. The Ak are weights which connect the second order input terms to

the first hidden, or output layer nodes. Ok is a single weight. zk is the output of a single

node, where k is the index on the output nodes.

This simple node structure allows implementation of many common neural network

paradigms, as well as many common preprocessing techniques which include Karhunen-

Lo~ve reduction, Fourier and Gabor spectral decomposition in a connectionist network

architecture'.

Cybenko showed that one hidden layer of nodes (two layers of weights) is sufficient

for any multivariate function approximation problem (7). Suter and Oxley proved that the

output of the hidden layers can be, not only a sigmoid non-linearity, but also a negative

exponential(42). While Cybenko (7) and Kolmogorov (27) have shown that convergence

As possible, the resource requirements are never addressed. In other words, a large numribir

of hidden layer nodes may be needed to solve any generalized functional mapping. This

observation may have lead to the anonymous entry on the ARPAnet:

While Cybenko showed that a neural network can solve any input-output
mapping with a single hidden layer of non-linear nodes, the result may be like
proving that a monkey could write Hamlet. Certainly it could be done, you
just need a lot of monkeys, a lot of typewriters, aid a lot of time.( 1)

The problem of resource requirements remains. Using a neural network efficiently

requires making the problem as easy as possible for the net. The easier the problems, the

fewer resources required. Problems can be made easier by careful selection of the feature

space.

The previous chapter demonstrates how appropriate preprocessing of the data causes

learning to be speeded up. Faster training, by only changing the input features, indicates

a less complicated problem. The first layer of an artificial neural network provides a

'Finding the correct values for the weight matrix is regarded as a separate problem.
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set of basis functions used to construct an output. These nodes can be described as

basis functions because the output is made up of weighted combinations of the output

of these nodes. Selection of appropriate basis functions at the hidden layers can reduce

the complexity of the problem. Since neural network nodes calculate the discriminant

function, improving and generalizing the node structure may ease the requirement for

large numbers of nodes.

Pao (32) suggests improvements on the node structures to reduce the complexity of

the decision space. He uses additional terms in the input, as part of the feature vector. Pao

refers to these additional terms as functional links. Nilsson(30) suggested the inclusion of

second order terms in a general classification architecture. These include all the product

terms up to second order. Pao suggests additional that function-like terms be included

as well, and uses the example of sin(xi) and cos(x1 ). In practice the advantage of using

functional links is dependent on the nature of the decision space. If the functions are

related to the nature of the input data, the improvement is dramatic. Unfortunately, when

using neural network techniques, a priori knowledge of the decision space is usually not

assumed.

The next section will describe the discriminate function provided by a simple Cy-

benko type network as show in Figure 13.

3.2 Perceptrons - Hyper-Plane Discrimination

If fh is a sigmoid function,

__ 1
fA(a) + -0 (2)

the expression in Equation I describes the common perceptron allowing all first and second

order terms. Note that if the matrix A is the zero matrix, then we have,

YJ =_ A TV . -- 2 j)
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Figure 13. General form for a Cybenko type network.

a simple first order perceptron, and for each node,
n

Yj = fh(Z, x, +

where n is the number of input nodes. If fh is the sigmoid function from Equation 2, the

output of

1

= 1 + e-(E"', w1i x,+oj)'

then the output layer can be linear nodes (no sigmoid squashing). That is:

J
Zk = ajk Y1 + Ok (sum over hidden units).

i=1

The outputs of the network for a two layer net can be described in terms of the inputs:

J n

Zk = , ajkfh(-' wj Xi + 0j) + Ok,
j=l i=1
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where zk is the output, j is the index over the hidden layers, and i is the index over the

inputs. Cybenko showed that this architecture is rich enough to approximate any functional

approximation (7).

Equation 1 defines the elements which make up the generalized neural network. The

following development will show how these functional elements can be used to generate the

common neural network paradigms. For these definitions the vector Aj will be redefined

to be a matrix such that the index of each element atm corresponds to the weight connected

to the second order input of ', xIxm.

Note that if A is a diagonal matrix,

all ... 0

A 2 
...

a2

0 a,,,,

then an additional set of weights, as. ociated with each of the second order individual

features is defined. That is, there are the usual wixi terms and also a set of aix? terms.

Thus,

J n n

Zk =E k + fh( ai+) +ckk (3)
j=l i=! i=l

If A is not diagonal then cross-terms exist and the output of the network can be

described by a similar equation. First a new index for A is introduced to distinguish

between which cross-term of X are connected to which hidden layer nodes. Use of the

higher order terms requires n terms for the first order nodes, and n 2 for the second order

terms. But since multiplication is commutative, many of the terms are redundant. The

following equation uses two new indices:(l,m) when the cross products exist. The index

extends only to m less than or equal to 1 because terms beyond that are duplications of

previous terms.
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J n 1

Zk = Ya, fh(ZEaimxlxm+ Zwixi+ Oj) +(kk (4)
r---I ---I I ij=1 =m<1

Lippmann(28) demonstrated how simple perceptrons perform hyper-plane separa-

tions of the input data. By setting the argument of the sigmoid to zero the resulting

expression is the equation of a hyper-plane. This formulation of a neural network node

will allow separation of classes by appropriate combinations of hyper-surfaces in the form

of n dimensional conic sections. Note that each exemplar (a feature vector and an associ-

ated output class) is defined as a point in the decision space. The argument of the sigmoid

function is the equation of a hyper-plane. Class distinction is made by determining if the

argument of the sigmoid is positive or negative.

Positive arguments are the collection of points on one side of the hyper-plane,

negative arguments are on the other. It's interesting to note from the development in

Figure 14, the output of a perceptron supplies a distance metric, multiplied by the magnitude

of the weights. By adding second order inputs, the expression described by setting the

argument of the fh to zero results in discriminant functions that are no longer linear

in X, but quadratic in X. The decision surfaces are not hyper-planes, but hyper-conic

sections. Adding second order terms reduces the number of nodes required to approximate

a decision boundary or function. Generally, combinations of a number of hyper-planes

are required to approximate curved decision surfaces, while the use of higher order terms

(conic section) alleviates the need for large numbers of hidden layer nodes. For example,

in the exclusive-or problem described in Section 2.3 use of the second order term allowed

the network to solve the problem without hidden units.

Third order terms offer even more complex decision surfaces, but in practice, the

benefit is outweig ed by the cost of the exponential inciease of input terms. Barron (3)

uses higher order combinations of input terms. By precalculating the relative saliency

(value) of the terms, he is able to retain only those terms which contribute to the problem's

solution.
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What is the output of a perceptron ?
Consider an ni dimensional space. Zk

P4Iqp~p~Nonlinearity

S-. ... Weights

.~~~ ......

Equation of the Hyper-Plane (PL) Is Ax1+Bx2+Cx3 ... +Exn D. The plane coeffcients can be represented as a

vector W, and the points In space.a a vector P with features;x . Thus the plane (PL) can be represented as

the set of points such dha W* P= D. Where P is any arbitrary point and D is a constant.
AI+BI.Ci ... are the direction vectors for the line perpendicular to PL. 'Thus a normal vector is also W

'The distance D3 Is given by: Trhe output of a perceptron Is

D =D1 +D fit ( W-o+ D)

First Biud D1. The normal distance of the point in decision
DIIs the projection of P0 on the normal (W) space to the byper-plane is:

W.Pe NHW 11 -11 P0l 11 Coo() distance = (W-P0 + DYIIWIi.

-OOH II P 11. Cos(O) Cs( o distanceelIWII = W*P0 + D

Di W.P 0 / I IWIi In other words.the output ofa nodeis

Next fed D2the sigmold of the normal euclidian distance
Next fnd Dlof the exemplar to the discriminant function,

D2is the projection of the normal (W) onto Pl times the magnitude of the weight vector.

W.Pi - IIWIIAtP 1ll Cos(O)

but since the vector from the origin to Pand the normal (W) are parallel. e = 0. Also, for alt

pointsonthe plane,W.P- D.so W*PI=D. and since D)2 - ltPI1l:
1)-NWN. D2

D2- DilWi

D)3= W*P0 ANNW +DA1IWH - ( W.Po+ D)AIWlt => Distance from the point to the hyper-plane.

Figure 14. Output of a Perceptron
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Most neural network architectures can be classed as one of two types: those which

use hyper-ellipses to partition the decision space and those which use hyper-planes. The

first type is sometimes referred to as radial basis functions network. Both types are

contained in the generalized neural network architecture by an appropriate setting of the

weight matrix. The next section will show how both types are special cases of a similar

architecture.

3.3 Radial Basis Functions(RBF): Hyper-Ellipse Discrimination

While backpropagation performs logical computations much like the child would

identify objects based on the answers to twenty yes/no questions, radial basis functions

provide a different view of the decision regions. Every node in the hidden layer identifies a

specific region in the decision space. A radial basis node might be considered a computer

implementation of a grandmother cell 2, that is a single node to identify a single concept.

Using the notation as in Equation 1, the output of a radial basis node is given by the

following:

Zi(x, = E) (5)
i=1 i

where cij is the center of the jth receptive field and a?. is the variance. Notice that the

output of the RBF is a metric, or value related to the distance between the input vector and

the weight vector c. The variance term adds flexibility to the formulation which allows a

cost function in the direction of a particular feature vector term. Expanding out the squared

term,

= fn (x? - 2xicli + cj),-_- or?.

2A grandmother cell is a concept that a single neuron is used to identify a single, complete concept. In
other words, one neuron will fire upon recognition of an object, for example a grandmother.
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Zi A f, ( 2 + " 2c,, Xi + -) (6)
S i=1 tj i=1 '3

Because the variance is a multiplicative constant, it can be assumed to be one without

a loss of generality. The effect on non-unity variance is to alter the size of the receptive

field for a particular node. Thus if the input vector X and weights C have been normalized

then
n nt

Ex= land I4 = 1
i=1 i=1

zj = fh(I - 2 c,,xi + 1).
i=l

Two methods are possible for using radial basis functions for classification. The first

method is to assign a class type to each node. The process, sometimes called calibrating

the network, is possible by using one node for each training exemplar. If the training set

is too large, self-organization methods allow assigning a known class to each node. The

second method, more common to function approximation techniques, uses a least squares

approximation of the output of the nodes for each exemplar. Since the output information

of the node is related to distance, constants can be ignored for classification purposes. The

only effect of including the first and third terms in Equation 6 is to increase the output of

each node by a constant amount.

Normalizing the weights and input vectors allows a distance metric to be computed

by taking the dot product of the input with the weights. The output of the node is a number

between minus one and one.

Since two terms (Equation 6) are constants they can be ignored in computing a

distance metric. Consequently, the only term of significance is xi - cj. A number of

clustering neural network paradigms use this approach to compute distance from pattern

templates, ART II, Kohonen Maps, and Counterpropagation to name a few. Normalization
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has the disadvantage of forcing all exemplars to the unit hypersphere.3 This disadvantage

can by mitigated by a number of approaches. Carpenter suggests one approach is to include

a magnitude term as an additional feature element and renormalizing.

Weights attached to radial basis nodes become like the training data. Each weight

array is trained in such a way as to represent a cluster of data, hence the analogy to the

grandmother cell.

But the structure presented here can go beyond hyper-sphere, and hyper-plane parti-

tioning of data. Note that the argument of Equation 5 could be implemented without input

subtractions and divisions, but in the standard format of input times a weight, summed in

a node. This is especially important since normalization need not be assumed. This led to

the idea of using conic discriminate functions which include not only planes and spheres,

but hyperbolas and paraboias.

The following section shows how RBF's can be implemented as a special case of

the generalized neural network, yet trained using ordinary backpropagation.

3.4 Conic Basis Functions-Second Order Hyper-Surfaces

Perceptrons use combinations of hyperplanes for discrimination. Radial basis func-

tions use hyper-ellipses for discrimination. Both can be implemented as single elements

as shown in figure 12. A radial basis function computes squared distance and divides by

the variance. The same calculation is possible using the second order inputs.

For any general radial basis receptive field, the A and VW weights associated with a

particular input node would be (using the same indexing as in Equation 4):

.for (I = m) ai, - I

otherwise a,.. = 0 (7)

31n other words, vectors (1,1) and (2,2) appear to the network as ( j, ).
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(8)

If the A matrix is zero, the system implements standard perceptrons. If the A matrix

is diagonal with weights as in Equation 8 radial basis functions are produced. Additional

discriminate forms are possible if cross-tarm weights are non-zero. The shape is dependent

on the particular weights.

The generalized approach has a number of advantages. The output of the nodes

(before the non-linearity) is exactly the squared distance, if the variance is one. Radial

basis functions are part of the general architecture.

The equation for the node output could be called conic basis functions, because the

output equation is the same as used to describe conic sections. The difference between conic

basis functions and radial basis functions is simple. Radial basis functions discriminate

between points in the decision space which are either inside or outside a radial or elliptical

region. Conic basis functions include an additional class of discriminate functions: those

which are hyper-parabolic. Figure 15 shows some of the types of discriminant functions

possible using second-order combinations of two dimensional data.

3.5 A Generalized Architecture

Previous sections have shown that using a generalized neural network, a variety of

common neural network paradigms can be computed. These functions were shown to be

generalized in the sense that the output of a second order node is of the same general form

as the equations for a conic section.

The generalization doesn't end there because, by turning off or changing the non-

linearity, several common filter techniques are possible.
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X inputs xTx inputs
Two input Conic Perceptron

Output = fh(wlIxl+w 2 ex2 + 0 + al2*xl*x2 +al I x1
2 +a2 2 +x2

2)

Two input Radial Basis

Output = fh((x I'C 1)2/012)+(x2"c2)2/a22))

= fh(I/o 2 .XI "2/( 1 2c 1.x 1+l ,'cy 2 c2 + l/2y2 2.x 2  -2/02 2c2*x2+ 1/2 2 c 2  )

Equation of a Conic Surface without cross terms.

Figure 15. Conic Basis Function. The additional weights and inputs allow the archi-
tecture to provide discriminant functions with curved surfaces of a conic
sections.
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Artificial neural networks perform a mapping from a multivariate input feature

vector, to an output mapping related to the structure of the data and the problem being

solved, either classification, or function estimation. The generalized view of neural

networks allows function estimation to include Fourier decomposition and Gabor filtering.

3.6 Generalized Neural Network Paradigm Implementations

Many common neural network paradigms and preprocessing techniques can be

implemented by using different values of the weight A. The following examples show

modifications which can alter the function of a generalized neural network.

* Backpropagation. For vanilla backpropagation the A matrix is zero. Most of the

variations of backpropagation differ in the training algorithm.

* Radial Basis Functions. For hyper-elliptical receptive fields, the matrix A is

diagonal. Variance values of other than one allow for elliptical receptive fields, unit

values imply spherical receptive fields. In the conventional format the non-linearity

is changed to a simple exponential, although a sigmoid can be used without loss of

generalization.

* Counterpropagation. Counterpropagation is a variation on radial basis functions.

The inverse mapping property of counterpropagation is not considered here.

e Kohonen Mapping. Kohonen maps are radial basis function networks where the

output nodes are arranged as a two dimensional array.

e Digital Fourier Analysis. Neural networks can perform Fourier analysis by setting

the weights according to the Fourier kernel, which is e L4tI where k is the number of

the output node, N is the number of input nodes and t is the number of the particular

input node. The fact that weights are complex can be overcome by allocating one

weight for the imaginary part, and one for the real part.
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"* Gabor Functions. Gabor function analysis is performed by correlating the signal

with a Gaussian times a complex exponential. For Gabor filtering, an input signal

can be pre-multiplied with the appropriate Gaussian, then use the Fourier net on top.

"* Karhunen-Lobve Feature Reduction. Karhunen-Lo~ve transforms, or eigen trans-

formations, transform the input data into a feature space with a smaller dimension-

ality. The weights are calculated by taking the eigenvectors of the data covariance

matrix and using one node for each eigenvector. Karhunen-LoAve transforms are a

means to self-organize the data based on the interdependence between the features.

A Karhunen-Lo~ve network is performed by taking the eigenvectors of the data

covariance matrix and using each eigenvector as a weight vector. The derivation is

shown in Section 4.4

" Statistical Normalization. Statistical normalization is important to neural network

training because it relieves the backpropagation algorithm from learning wide dif-

ferences in dynamic range bctween feature vectors. The effect ic to stabilize the

learning rate enough so that convergence can occur in finite time for a wide range

of learning rates. Most important is that it allows all learning rates to be equal.

Statistical normalization layers have only one connect between the input and the

layer above, the weight is the inverse of the standard deviation. The threshold is the

mean divided by the standard deviation.

3.7 Conclusion

While many neural network paradigms have gained popularity over the years, most

paradigms can be simplified into one of two classes of discriminant functions, hyper-surface

classifiers or hyper-ellipse classifiers, that are either perceptrons or radial basis functions.

Both of these constructs can be implemented in a single class of neural networks called

a conic basis function classifier. In addition, eliminating the non-linearity between layers

allows for computation of Gabor filters or Fourier analysis. Generalized neural networks

still suffer from the exponential growth of the input layer for large problems.
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In order to reduce the size of the input layer for the image segmentation problem,

the next chapter will evaluate several methods for finding a minimum sized input feature

vector.
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IV. Feature Selection in Generalized Neural Networks

This chapter will investigate the use of several novel techniques to reduce the size

of the input feature vector and the size of the network architecture. This is important

considering the generalized neural network architecture requires 2 inputs. The first2

method is a straight forward procedure to compute the relative usefulness of a feature based

on the magnitude of the weight vector. This simple method is shown to be statistically

equivalent to more sophisticated methods. Next, a method for data preprocessing using

a variation on the method of principal components is illustrated. Finally, a means of

computing the principal components recursively is evaluated for use in segmentation

problems.

These methods are used to (at least partially) overcome the curse of dimensionally

referred to by Duda and Hart (9). The first method is derived from Ruck's saliency metric

(35:32). The second method uses a novel neural network implementation of the method of

principal components. The third method uses a self-organization technique called identity

mapping to construct an alternate input feature vector.

4.1 Why Limit Input Features?

Any classification device will have limited resources to compute its output. In con-

structing a classification device, one of the first considerations is what measurements will

be used for inputs. Increasing the size of the input vector increases resource requirements

in a number of ways.

The size of the input feature vector controls the size of the interconnection matrix

(weights). Also, larger input vectors require additional training data to ensure generaliza-

tion. Foley showed(13) that as the size of the input feature vector grows, the size of the

training data set should also grow to prevent simple memorization. Foley's rule suggests

that the number of training samples per class should be greater than three times the number

of features. Under this condition, the error rate on the training set should be close to the
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error rate on an independent test set. Foley's rule requires certain statistical criteria must

be met. Samples must be taken from Gaussian distributions, which in practice is usually

ensured by the Central Limit Theorem. Cover, who assurmes a Gaussian distribution,

proved that a data set can be memorized if the total number of training samples is less than

twice the number of features. He shows, that under these conditions, a two cla&s data set

can be partitioned by a single hyperplane, with a probability of greater than 50 percent,

even if the data comes from the same distribution(5).

With image data, obtaining large data sets is not difficult, though preparation of the

data for training can be. The difficulty lies in the large input feature vector generated

by a scanning window architecture. For the segmentation problem, grouping pixels into

classes, is based on local pixels that surround the pixel being classified. These pixels are

(usually) taken from eight by eight, or sixteen by sixteen windows around the pixel in

question. Looking at an area only eight pixels on either side of the source pixel, requires

a 256 wide input vector. The only solution is to preprocess the data in some way.

The most obvious way is to eliminate redundant or useless features. This introduces

the concept of saliency, or usefulness, of a feature. Unfortunately, the saliency of a feature

cannot be determined individually. Classification is determined by taking combinations

of features. Some features may be useful only in the presence of other features, while

useless on their own. Consequently, saliency computations involve all network parameters

simultaneously.

The following section will show a simple method to determine feature saliency using

a trained neural network. Under certain conditions, network training allows saliency to be

determined by examining the weights attached to a feature'.

'Saliency can be determined in a similar fashion for hidden nodes. A feature. is defined as an input node.
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4.2 Computing Feature Saliency

This section will present an empirical method to calculate saliency based on the

weight vectors. Previous work by Ruck and others suggest several methods for finding

feature saliency. The brute force approach to calculating saliency requires examination of

the change in output of the network with respect to changes in the input. For example,

if several points were selected over the range of each feature value the entire input space

could be characterized. Such a characterization of the feature space would require a long

time. Even if only ten points were examined for each feature of an eight by eight window,

6410 data point (exemplars) would have to be propagated through the network.

A alternate approach would be to examine the input space only in the regions

where sample points exist. This method is called sensitivity analysis. Klimasauskas (24)

suggests that a feature's saliency can be determined by holding the data sample constant and

adjusting the feature in question over its range. Sensitivity analysis requires examination

of the error over the entire range of the input features. The saliency is computed by looking

at the change ". error over the data set. Ruck et al (37, 10) suggest an examination of

the feature space across the range of each input around each training point to determine

the change in the total error for the classification problem. The difference here is that

instead of looking at only the change in the output, the derivative of ihe error is summed

for the entire data set, over a range of points for each input sample. The second method

uses the derivative of the error directly while the first method attempts to approximate the

derivative of the error.

Priddy(33) describes the calculation of the saliency metric below:

The saliency (Qj) can be calculated as follows: Take each training vector (Y)
in the training set S. For the ith feature, sample at various locations over the
expected range of the feature while holding all other features in iF constant.
Next compute the magnitude of the partial derivative of the output zk for the
sample vaiues. Sum tlie magnitude of the partial derivative of Peror over the
outputs (j). the sampled values of xi (Di), and the training set S.
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The calculation of the saliency metric iq described by the expression:

f~j aPerror 0, )=,-EE E I I
. feS xieDi

which can be rewritten with some restrictions as:

QjE F, (9)
i &S xielD k.j

where

j Output nodes index

k Output nodes index (other than node j)

Di= Set of sample poixits for feature xi

Ruck uses the expression:

,, =1 4 (10)
ECS k XiED,

Priddy showed that the difference between Equation 9 and Equation 10 is a simple

multiplicative constant (n - 1)(33). The following section describes a simpler way to

compute saliency.

4.3 Weights as a Saliency Metric

Considering how weights in a neural network are updated, the weights can be used

to calculate the saliency. When a weight is updated, the netwofr moves the weight a

small amount based on the error. Given that a particular feature is relevant to the problem

solution, the weight would be moved in a constant direction until a solution with no error

44



is reached. If the error term is consistent, the direction of the movement of the weight

vector, which forms a hyper-plane decision boundary, will also be consistent. A consistent

error term is the result of all points in a local region of the decision space belong to the

same output class. If the error term is not consistent, which can be the case on a single

feature out of the input vector, the movement of the weight attached to that node will

also be inconsistent. In a similar fashion, if the feature did not contribute to a solution,

the weight updates would be random. In other words, useful features would cause the

weights to grow, while weights attached to non-salient features simply fluctuate around

zero. Consequently, the magnitude of the weight vector serves as a reasonable saliency

metric, and can be calculated as shown in Equation 11, where i is the index of the feature

and k is the index of the next layer node the weight is connected.

k

Several conditions apply which are met using normal training procedures. Each

feature should have about the same dynamic range, often obtained using statistical nor-

malization, to ensure the relative value of feature saliency metrics are consistent.

To test this hypothesis, several data sets were piocessed with the NeuralGraphics

software. Using both methods, the saliency of several input sets was generated and

compared with the saliency metric as suggested by Ruck and LeCun, called here the

second order method(37). Tables 2 through 5 show comparisons of the second order

method and weight magnitude method for computing feature saliency.

In order to show that the magnitude of the weights could serve as an alternative to the

expression in equation 10, the exclusive-or problem (Section 2.3) is run again. Because

the result shown in TFable I indicated that adding the first cross term improved training.

the saliency for that term should be greater than the two first order inputs. An additional

(redundant) term was added to the feature vector equal to two times the xy term. This

has the effect of doubling the variance, which should increase it's saliency. If the weight
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method is an accurate predictor of saliency, it can be expected that the xy terms would

have a higher saliency than the x and y inputs.

The test was run and the results are shown in Table 2. The results were close to what

was predicted. The results showed that the 2xy term was the most important, followed by

the xy term with the x and y terms splitting third and fourth. The second order method

worked as weli, but the results were not as close to the predicted values. For the weight

method, the saliency for xy was half the saliency for the 2xy term. Using second order

saliency, the results were similar, yet obviously not as consistent. Even though features

two and three were set up to be not as important as the xy terms, the second order saliency

method ranked them higher on two out of twenty runs.

Since the weight saliency performed as expected for test data, the next step is to

calculate saliency for real data. Ruck calculated saliency for a set of data based on laser

range imagery and reported the results in (35). The data set is a 22 input, four output class

problem. The data set was used to train a neural network twenty times. At the end of each

run the saliency was calculated as before. The results for the weights saliency are shown

in Table 3.

Notice in Table 3 that the net identifies 13,2,19,and 0 as the four most important

features and 15,7,6, and 9 as the least important. Testing the prediction is possible by

running the network, turning off the training, then eliminating nodes. Eliminating any

of the nodes identified as the most important results in a severe loss of training accuracy

while eliminating the least important nodes results in no change in total error or accuracy.

The same test was tried for the second order saliency metrics shown in Table 5. The net

selected 13,18,0,2 as the most important and 17,15,7 and 6 as the least important.

The statistics presented in Tables 2 through 5 were calculated using a two layer net

with fifteen hidden nodes, for twenty runs. Ruck reported in his test that the most important

features were 13,0,19 and 18 and the least important were 6,9,7,17(37). To compare the

consistency of both methods, all the features selected as important by both nets are shown

in Table 4.
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Weight Method
Rank

0 1 2 3
,.140 0 0 12 8

1 0 0 8 12 Saliency Histogram
S2 0 20 0 0

3 20 0 0 0

Feature Rank Value Feature Rank
0: 2.40 0.03 3: 0.00
1: 2.60 0.03 2: 1.00
2: 1.00 0.49 0: 2.40
3: 0.00 1.00 1: 2.60
By Feature By Rank

Second Order Method

Rank
0 1 2 3

0 0 1 6 13
1 0 1 12 7

S2 0 18 2 0 Saliency H istogram
3 20 0 0 0

Feature Rank Value Feature Rank
0: 2.60 0.00 3: 0.00
I: 2.30 0.00 2: 1.10
2: 1.10 0.07 1: 2.30
3t 0.00 1.00 0: 2.60

Table 2. Exclusive-Or Saliency.Node Saliency for the XOR Data. The square matrix
illustrates 20 runs of the same data using different initial conditions. The rows
indicate the number of times a particular feature ranked at that position. The
columns indicate the feature. Row 3 of column 0, shows that feature 3 was the
most important 20 times out of twenty. Column 2 indicates that feature 2 was in
the number one place 20 times. Below the histogram, the saliency tables show
the average rank of a feature first by number, then rank ordered. The value
column shows the actual calculated saliency scaled by the highest value for the
final run.
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Weight Saliency Method

0 1 2 3 4 5 6 7 6 9 10 11 12 13 14 15 16 17 18 19 20 21
0 0 1 414 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 a 6 5 1 0 0 0 0 0 0 0
2 016 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 513 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 1 510 3 2 0 0 0 0 0 0 0
5 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 5 5 6 4 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 9 3
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 4 6 5
a 0 0 0 0 0 0 0 016 3 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 00 0 00 0 0 0 0 000 0 1 0 0 2 3 410
10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 6 4 2 1 1 1
11 0 0 0 0 015 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 217 0 1 0 0 0 0 0 0 0 0 0
13 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 1 3 15 1 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 6 7 3 0 1
16 0 0 0 0 0 0 0 0 0 0 0 4 0 7 7 1 1 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 7 4 3 2 2 0 0
t1 0 0 0 1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 312 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 3 3 5 6 1 0 0 0 0 0 0

21 00000001910000000000 O0 0 0 0 0

Saliency Histogram
Sorted by feature 8"=ted by average Rank
Feature Average Rank Feature Average Rank

0: 2.75 --13: 0.00 most imortant
It 11.95 2s 1.20
2: 1.20 19: 2.10
3: 5.75 0: 2.75
4: 11.93 18s 3.95
5: 16.45 111 5.25
6: 19.70 3s 5.75
71 19.25 21: 7.05
8: 8.25 8a 8.25
9: 19.90 14: 8.80

10: 16.65 12: 10.00
11 5.25 12 11.95
12: 10.00 4: 11.95
13: 0.00 20s 13.05
14: 8.90 16: 13.20
15t 17.70 17: 1S. 10
16: 13.20 5: 16.45
17: 16.10 10:___ 1. Least Important
16: 3.95 15: 17.7U
19: 2.10 7: 19.25
20t 13.05 6: 19.70
21: 7.05 9: 19.90

Table 3. Node Saliency for the Ruck Data using weight vector magnitude. The square
matrix illustrates 20 runs of the same data using different initial conditions. The
rows indicate the number of times a particular feature ranked at that position.
The columns indicate the feature. Row 13 of column 0, shows that feature 13 was
the most important 20 times out of twenty. Column 2 indicates that feature 2 was
in the number one place 16 times and number 2 four times. Below the histogram,
the saliency tables show the average rank of a feature first by number, then rank
ordered.
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- Comparison of Saliency Calculation Methods
Feature Weight 2nd Order (Tarr) 2nd Order (Ruck)

13 0 0 0
2 1 3 .5

19 2 5 2
0 3 1 1

18 4 2 3
21 7 41 4

Table 4. This table shows how the features selected as most important compared for each
saliency method. Notice, that even though the rank ordering was not exactly
the same, the discrepancies were not more than a few places different. The first
column was calculated as shown in Equation 11. The second column shows
the results as calculated by Equation 10. The third column is taken from the
Ruck[ruck:fsel].

As Table 4 shows, the ranking for the top few nodes never differed by more than

a few places. Using saliency to determine which features to select was demonstrated

by Ruck. Calculation of saliency as demonstrated by LeCun and Ruck, requires sec-

ond order networks2 and considerable computational effort is involved. Calculation of

saliency using the weight method requires fewer calculations and is possible on an ordinary

backpropagation network.

The results presented in this section show that the weights can be used to compute

the saliency of a feature. The specific results for the exclusive-or problems indicate

that saliency doesn't take into account redundant features. Fortunately, a mechanism for

elimination of redundant, or correlated features exist. Karhunen-Lo~ve transformations

provide a means of eliminating redundancy. The next section will discuss principal

component analysis for preprocessing data in a neural network.

2The nets are not second order because they use second order inputs, instead they used te second order
derivative for calculating the weight updates. The second derivative of the error is also used to calculate
saliency.
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Scond Order Saliency Method
Rank
0 1 2 3 4 5 6 7 9 9 10 11 12 13 6t 15 16 17 18 19 20 21

0 6 2 3 1 3 1 1 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 2 4 2 4 1 3 2 1 0 1 0
2 0 6 2 5 3 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0000003324710000000000
4 0 0 0 1 1 4 6 5 2 1 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 1 3 3 6 0 2 1 1 0 3 0 0 0 0
6 0000000000000011003267
7 0000000000000000133652

0 0000010124543000000000 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 3 3 2 3 2 2

10 0000000000000202335113
11 0001322561000000000000 0 0
12 0000000010046411 300000 0i
13 13 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 1 2 5 8 4 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 2 4 4 1 3
16 0 0 0 1 2 4 3 0 3 3 3 1 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 2 4 2 :
18 0 7 7 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 2 2 2 2 4 3 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 2 1 8 5 1 1 0 0 2 0
21 1144320112100000000000

Saliency Histogram

Feature Rank Feature Rank

0: 2.95 13: 0.901: 14.35 18: 2.05 Most important
2t 3.10 0:2.95
3: 6 60 2: 3.10
4: 6.15
5: 11.85 19: 4.70
6: 19.40 4: 6.15
7: 18.85 11: 6.45
8: 9.70 16: 7.05
9: 17.45 3: 8.60

10: 17.35 8: 9.70
11: 6.45 5: 11.85
12: 12.65 14: 12.60
13: 0.90 12: 12.6514- 12.60 1: 14.35
15: 17.90 20: 14.85

.16: 7.05 10: 17.35•:!:
17: 17.80 9: 17,4_5
18: 2.05 17: 17.801
19: 4 70 15: 17.90 Important
20: 14.85 7: 18.851
211 4.30 6: 19.401

Table 5. Node Saliency for the Ruck Data using second order terms.
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4.4 Karhunen-Lo~ve Networks for Feature Vector Reduction

The following section describes a neural network architecture for eliminating re-

dundancy in the input feature vector by adding a preprocessing layer. This preprocessing

layer coupled to a conventional backpropagation network is called a Karhunen-Lo~ve

neural network. Karhunen-Lo~ve networks can be used to facilitate the classical pattern

recognition process.

Classical pattern recognition requires a series of data reduction steps followed by

application of a discrinfinant function. Data reduction begins by decomposing a real world

event into a tangible set of measurements. Tangible measurements include photos. radar

cross-section returns, and laser range data, to name a few. The next step, segmentation,

requires that the events, or objects, are separated from its background and unrelated

information.

Feature extraction requires that meaningful measurements be made from the sepa-

rated or segmented objects. The measurements or features are grouped together and are

the sole representation of the real world event io the classification engine. Sometimes in

an effort to find the best set of meaningful features, multiple features are selected which

convey the same information.

Classification can be handled severml ways, using artificial intelligence techniques,

statistical classification such as K-nearest neighbor, Bayesian, or artificial neural networks.

Ruck has shown that statistical methods and neural networks are only different in their

implementation (39). Because statistical techniques do not lend themselves easily to

hardware implementations, neural networks offer an alternate approach. Although neural

networks are fast on execution, training time can be excessive. Excessive training times

are usually caused by large numbers of interconnections, and more commonly, training

data that is not easily partitioned in the decision space. The two problems, complexity ini

the architecture and complexity in the decision space, could be ieduced if the size of the

input vector were reduced to the minimum number of elements required to partition the

de,-ision space.
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A common method used to reduce the dimensionality of the feature vector in sta-

tistical classification is the method of principal components. The number of feature

components can be reduced by taking linear combinations of the individual features. This

procedure is known by several names, the method of principal components, Hotelling

transform, or eigenvector transform(16). This section presents a neural network imple-

mentation, related to the discrete Karhunen-Loeve transform. Using a Karhunen-Lo~ve

transform layer offers another partial solution to the curse of dimensionality(9) problem

associated with large feature vector classification.

The following sections will describe three methods for computing the weights in a

Karhunen-Lo6ve neural network. The weight matrix is computed firom the data covariance

matrix. Computing the data covariance matrix can be done in several ways. Each method

for computing the covariance matrix provides an alternate method for finding the Karhunen-

Loive weights. This section will compare the accuracy of each method.

The first, simply called Karhunen-Loive, uses all training vectors to compute the

covariance matrix. The second, the Karhunen-Lo~ve mean uses only the in-class mean

data vectors, (one for each class) to compute a covariance matrix. The third method, Fisher

linear discriminants, is used to maximize the ratio between the between-class covariance

and the inter-class covariance(9). The algorithms 5re tested against two data sets consisting

of features extracted from infrared (IR) and laser range imagery for classification of tactical

targets.

The following sections show how the system can be implemented as part of a neural

network architecture.

4.5 The Discrete Karhunen-Lo~ve Transformation

This section will develop a means of computing a set of weights which have

Karhunen-Lo~ve characteristics. The Karhunen-Lo~ve weight values are generated by

first constructing a two layer network which calculates an estimate of itself as the output.

The network uses backpropagation to train the weights. The output of that layer, Y,
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shown in Figure 16 is used as a preprocessing layer. The output of the nodes in the Y

layer will be used to replace the input vector X. If the number of nodes in the Y layer

is the same as the number of input features, the input vector can be reproduced exactly.

Karhunen-Lo~ve provides a means to eliminate nodes of the Y and degenerate the estimate

of X in systematic way. Figure 17 shows a Karhunen-Loýve network which uses the first

layer of weights from the Karhunen-Lo~ve identity network as an input to a conventional

backpropagation network.

A

x

A weights

y

A'r
weights

Figure 16. Network Architecture for a Karhunen-Lo~ve Identity Network.

Y is a set of transformed input vectors(X). Since the data set Y can be used

to rcproduce X or at least a reasonable estimate of X (XC), Y can be used to make

classifications. If an input vector can be passed through a layer of hidden nodes that is less

in number than the size of the input vector, then the network has found a more compact

representation of the input data. The weight matrix A' (the transpose of A) is calculated

using eigenvectors of the covariance matrix of X as will be shown below.

Figure 17 shows how the network is organized. A set of input vectors X is propa-

gated through the net to the first hidden layer of nodes Y. Propagation is the result of a

matrix multiplication of the input vector X times the weight matrix A'.
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Train weights
,.&--"using back-prop.

Reduced y
Feature Vector

Fixed weights composed

Input node X

Figure 17. Network Architecture for a Karhunen-Lo-ve preprocessor.

In matrix notation, a random vector X, could be represented as a column vector.

x1

x T2 (12)

xj

X , the feature vector, could be represented without error, by a transformation of

the vector by matrix multiplication with A such that:

X=AY

Xi = .yAj
i=1
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and

A [A, A 2 A 3 ... A,] and IAI # 0

The matrix A represents the weight matrix, and the A's are single column vectors

of the weight matrix. The A~s represents the weights connected to a single hidden node.

Here the transformation matrix A does a simple rotation of the vector Y to the vector X.

If A is selected such that the columns of A are orthonormal and form n linearly

independent basis vectors then:

A'A = I and A` = A' (13)

Under these conditions the new feature vector Y can be expressed as

Y = A'X
n

yj = EXA'i, (14)
i=1

(15)

Consequently, one can go between Y and X interchangeably. If a transformation

matrix A could be found such that, for a n-dimensional vector X, transformed to a m-

dimensional vector Y whose m < n components were either constant or zero for all X,

then those extra components of the feature vector could be eliminated from the learning

machine. They contribute no extra information.

However, the object is not to reproduce X exactly, but to provide an estimate of X

under the constraint that the dimensionality of Y is less than X. The procedure would

be to replace those components yi, m < i < n, with their mean and create an estimate,

X., If the dimensionality of Y is the same as X, then X could be reproduced exactly.
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But, if the dimensionality of Y is less than X only an estimate is possible. If the estimate

is good enough, the estimate can be used for classification. Since Y contains the same

information as XC, Y could be used instead.

If, for every X propagated through the network, some of the Y nodes were either

very small, zero or constant, no mattec which X vector is used, they are not necessary

to reproduce X. If a node is constantly zero, or near zero, it can be eliminated. If it

were constant, a constant (bi) times the particular value of A could be added to the X

component. From a neural network stand point, it becomes part of an offset value added to

each component. That element of Y could be eliminated. Equation 16 shows replacement

of Y nodes with their average value. The bi coefficients are constant for all X , while the

y, coefficients are variable for each X.

M n

X(m) = ZyA, + E biAA (16)

As will be shown, bi coefficients are the mean outputs of the deieted comporents for

the Yi. If the deleted components are replaced by their mean value, the expected error in

the transformation will be minimum. The error represented by Ihe transformation is:

n

X-j(m)= (y,- b,)A,.

(17)

Where E is a vector of differences between X and X. Components of Y are selected

for deletion to minimize the error. The error will be random unless it can be minimized.

The expected value of the mean squared error measures how effective the transformation

from Y to X" actually is.
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62(m) = E{e'e}

= E{ E E (y, - bi)(yj - bj)A'iAj} (18)
i=m+1 j=m+l

n

-- E - b) (19)
i=rn+i

where E(x) is the expected value of x. By taking the partial derivative of equation 19

the error can by minimized and the optimum value for the replacement values for yls can

be determined.

a= -2E{(yi - bi)} = 0.
ab,

The best choice for the constants would be

bi= E{y1}
| =Yi

= A'E{X}.

From equation 18, the error also can be expressed as:

n

E2(•) = E{ f (y, - b)(,- b)}
i=M+l

n

- E (y -- ?ji)(yi--)}
i=M+1

- E{ E A'(X - X)(X - X)'A,}
i=M+1

n

- E A'ExAj.
i=m+i
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Where £xis the covariance matrix of X. By selecting the Ai basis vectors, as the

eigenvectors of EX:

EXAi = AiAi

and since A',Ai = 1,

Ai = A'i ExAi

which in !um defines the mean squared error as:
n

=2(M) = E A, (20)

Next the eigenvaiues of Zxare computed. Each eigenvalue provides an eigen-

vector which is used as the weights connecting the input vector X with yi. The increase

in error is dependent on each eigenvalue. If the A~s are rank ordered, highest to lowest,

the components(yis)of the transformed vectors Y will also be rank ordered according to

its variance over all of X. The amount of mean squared error for a particular selection

of m is equal to the sum of the m - n eigenvalues remaining in the rank-ordered set of

eigenvalues for EX.

In simpler terms, the eigenvalues A,'s are equal to the variances of the yi's. Replacing

those components of Y with their mean has the least effect if the variance is small. Since

the objective is to classify rather than to reproduce X, the mean value (b,) can be ignored

altogether. Consequently the new vector Y can be presented to the network instead of X

for training and classification.

Some modifications remain before the neural network can train efficiently on the

transformed data. Ruck (40) has shown that the backpropagation algorithm is a degenerate
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form of the Kalman filter. One result of the degeneration is the lack of an adaptive weight

learning rate. Every weight update must use the same learning rate,

Lack of an adaptive learning rate forces some constraints on the network. These

constraints can ensure cunvergence in a reasonable amount of time. When a vastly cifferent

dynamic range exists between input nodes, the strongest node (the one with the greatest

dynamic range) tends to dominate the training. Over time the weights would converge if

the hardware could perform exact arithmetic, but hardware is never perfect. Training under

these conditions makes convergence more susceptible to errors introduced by round-off

errors and other hardware constraints. To make training easier, each weight update value

should be about the same for each node. This is possible only when the general range

of the data for each node is about equal. The best way to ensure this is to statistically

normalize the data after the network Karhunen-Loýve transform.

A consequence of rank ordering the eigenvectors is that the first feature of the Y

matrix has the largest dynamic range, followed by the next and so on. Rank ordering

is necessary to decide how many features to keep. After the decision has been made,

the data needs to be normalized to ensure the network training algorithm doesn't have

to work too hard to overcome the natural differences in dynamic ranges of the features.

Normalization, as used here, does not refer to the conventional energy normalization.

Energy normalization adjusts the total squared energy in a given vector to one. Here

statistical normalization is used. Statistical normalization adjusts each feature component

to have a mean of zero and a standard deviation of one. In effect, the feature value of

every vector is replaced by its statistical Z-score

Xnew = Xi - (21)
er,,

computed as shown in Equation 21. The statistics are taken over the training data set only.

Then, the new feature values are computed for the entire data set, using the statistics of the

training set. The process lends itself to neural network implementation as a single layer
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with equal inputs and outputs with only one weight connected to the next layer. Statistical

normalization ensures that the network training can converge in a reasonable amount of

time.

The following tests use three methods to calculate the covariance matrix of X. The

first method, Karhunen-Lo~ve networks, uses a covariance matrix based on all the data

exemplars. The method works well but the neural network system can be improved if the

effect of outliers and incorrectly labeled data points can reduced. The Karhunen-Lo~ve

mean and Fisher linear networks do reduce the effect bad data points. For Karhunen-Lo~ve

mean, instead of using all data points to calculate the covariance matrix, only one exemplar

for each class is used. That exemplar is computed by taking the mean vectors of all input

vectors which are members of the particular class. Duda and Hart (9) suggest an additional

modification to the process which actually pushes the separate classes apart in the decision

space. They suggest building a covariance matrix from both the between-class means

and another from the within-class or inter-class means. By taking the ratio of the two

covariance matrices, the separation of classes should be optimum.

The computation is a variation on the standard rules for computing a covariance

matrix. Let Xic denote the intra-class mean vector and Xoc denote the out-of-class

mean vector. The matrix EFL,iS computed by taking the inverse of the intra-class (IC)

covariance times the between class covariance to compute the eigenvectors.

EXFL = E [(X - - - Xc)'] £E [(X - X- Xoc'-

(22)

This method is called Fisher linear discriminants.

Figure 18 illustrates the process for computing the weights in the Karhunen-Lo~ve

layer. Starting with a set of random training vectors, a covariance matrix is computed. Next

the eigenvalues are computed and rank ordered, eliminating the smallest. For the following
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data sets, the data was rotated by multiplying the entire data set by the eigenvectors. Finally

the data set is normalized using the statistics of the training set. The next section compares

a Karhunen-Lo~ve network with standard backpropagation.

Computing Eigenvector Weights

KL •KL mnean •Fisher Linea

- Classification

Network

Use Data Preprocessing or Neural Network
Layer.

Figure 18. Computing the Rotation Matrix. The weights for the Karhunen-Lo~ve layer
are computed as illustrated. First a covariance matrix is computed from the
data set. The covariance matrix can be computed in one of three ways. The
data is rotated into the new decision space. Data rotation can be implemented
as preprocessing of the input vectors or as a nt ural network layer.

4.6 A Yarhunen-Lo~ve Network-

This section will present the results of a test of the Karhunen-Lo~ve preprocess-

ing layer A system for Karhunen-Lo~ve transforms preprocessing was implemented

as a menu item to the NeuralGraphics neural network simulator(44). The three types

of Karhunen-Lo•ve networks were tested. The routines are part of the data normaliza-

tion and preprocessing menu. Data normalization and preprocessing can be toggled be-

tween no normalization, statistical normalization, energy n(-rmwdi7ation, Karhunen-Lo~ve,

Karhunen-Lo~ve mean, and Fisher Linear Discriminants.

To test the efficiency of the transformation, several test sets were processed. A set of

data consisting of some imagery taken from infrared and laser radar range data was used.



Figure 19. Infrared Tactical Target Imagery.(34)

The image in Figure 19 shows infrared tactical targets. The object of the segmen-

tation function is to label each pixel as part of a target or part of the background. The

segmentation is performed by thresholding a Gabor filtered version of the image as shown

in Figure 20. A feature vector was constructed from the segmented blobs, based on shape

cnaracteristics.

Figure 20. Gabor Segmented Data.(2)

The range data was collected as part of a study to fuse infornation from a multisensor

suite for target identification. The procedure was tested against two data sets: the Ruck
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(35) data set and the Roggemann set (34). The Ruck set contains 78 exemplars with 22

input features. The Roggemann set consisted of 400 exemplars with 12 input features.

The first set tested was the Ruck data set taken from Avionics Laboratory laser

range data. Shapes were segmented, using a histogram based technique, from the infrared

images. Feature extraction provided the first 11 Zernike moments from the silhouette, and

11 moments taken from the border of the object, making 22 separate features. The set was

trained for 100,000 training iterations using a random presentation order of the data set.

The set consisted of 78 exemplars with 52 for training and 26 for testing. To establish a

base line, the network was trained frorm 50 initial random conditions.

The error for a particular count or training exemplar was averaged over each training

cycle for each data set. Each data set was trained using three,six, nine or twelve nodes in

the Karhunen-Lo~ve layer. Only the training error reduction is plotted because reduction

of error for the test set over time provides no information about the simplification of the

decision space. Still, it is important that simplification of the decision space does not

reduce the capacity to generalize. Statistics for mean squared error and accuracy are

summarized in Tables 6 and 7. The graphs which follow show the results for training the

networks for one hu:ndred thousand iterations.

The error plot in Figure 21 shows that same total error can be maintained with as

few as six of the 22 nodes. Significant improvement is possible with as few as nine of the

22 nodes. In Figure 21 comparable accuracy was possible by reducing the input vector

from 22 nodes to only six nodes. Note that the accuracy is maintained with as few as six

of the 22 input nodes.

Figure 21 shows the total error for a random set of weights is about ten and the final

error is about two. This corresponds to an initial classification rate of about 50 percent

with a final classification rate of about 98 percent after training.

One of the advantages of Karhunen-Lovive preprocessing is that it can be used to

not only reduce the complexity of the problem, but to simplify the network architecture as
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Figure 22. Roggemann Data Using Karhunen-Lo~ve Transform. The Roggeiriann data
contains only twelve features. Transforming all tw-lI'e, nine and six nodes
results in better performiance than using backpropagation alone. Simn-ia
classification performance is possible using only half the number of input
nodies.
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well. Each graph in Figure 21 shows the error history and accuracy over time for a network

trained with three, six, nine and twelve input nodes. Determining which nodes can be

deleted is simplified because the ordered eigenvector transform places the most important

nodes first, and the least important nodes last. One of the problems encountered was that

outliers in the training set could significantly influence the eigenvalues. To alleviate this

problem a change was made to the algorithm to reduce the effects of outliers in the data

set. The Karhunen-Lo~ve mean and the Fisher linear networks were the result of an effort

to reduce the effect of outliers on the classification. The results are shown in Figures 22

through 26.

Although reducing training time is useful, there is no advantage if the capability

to generalize is lost. Generalization can be tested by presenting the network with data it

hasn't seen before. By partitioning the data into one-third test and two-thirds training data

the following results were demonstrated. In the previous tests, the test data was examined

after training the net. The results are shown in Tables 2 through 7. To compare each

of the feature reduction methods, one more category was added to the table. Noted as

most significant features were selected as those chosen by the weight saliency test as the

most significant. The net was trained using only these, the most significant features. No

Karhunen-Lou.ve transformation was performed.

The tables show that Fisher linear discriminants, Karhunen-Loo.ve mid Karhunen-

LoNve mean all performed about as well. A fourth case (most significant) wass added for

comparison. The most significant entries indicate a ,neural nctwork was trained using only

the number of input features in the Nodes column, the features selected was determined

by the saliency metric. Karhunen-Loeve resuits were superior to using saliency alone.

The best results came from the Karhurien-Loive mean algorithm and the worst from

Fisher linear . The difference between the three was sttistically insignificant. For the

Ruck set, the classification accuracy was only reduced by a few percent using only six

input nodes (with a Karhunen-Lo~ve mean transform on the input). This means that the

performance was similar to backpropagation using only one-quarter of the input nodes.
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Figure 23. Ruck Data Using Karhunen-Lo~ve mean Network. The Karhunen-Lo~ve
mean transforms performed better than Karhunen-Loýve on this problem.
Total reduction of error increased, and accuracy was better than backpropa-
gation in every case.
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Figure 24. Roggemann Data Using Karhun~n-Lo~ve mean Network. Performance as
indicated by faster reduction of error is better for a Karhunen-Lo~ve mean
network than for the Karhunen-Lo~ve netwcrk.
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Figure 25. Ruck Data Using Fisher Linear Network. Training times were improved over
Karhunen-Lo~ve but Karhunen-Loelve mean performed better.
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Figure 26. Roggemann Data Using Fisher Linear. Fisher Linear discriminants did not
perform as well as either Karhunen-Lo--'ve, or Karhunen-Lo;-ve mean.
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Comparison Results for Ruck Data
File ] Algorithm JNodes I Train [-Test
Ruck Backprop 22 100.0 74.4

Karhunen-Loeve 3 86.0 51.9
Karhunen-Lo~ve mean 3 100.0 72.9
Fisher linear 3 100.0 74.4
Most Significant 3 98.2 68.1
Karhunen-Lo;ve 6 98.0 69.2
Karhunen-Lo;ve mean 6 100.0 73.0
Fisher linear 6 100.0 76.4
Most Significant 6 100.0 69.8
Karhunen-LoWve 9 100.0 63.0
Karhunen-Lo;ve mean 9 100.0 74.4
Fisher linear 9 100.0 74.1
Most Significant 9 100.0 68.1
Karhunen-Lo;ve 12 100.0 66.3
Karhunen-Lo~ve mean 12 100.0 77.8
Fisher linear 12 100.0 70.4

1 Most Significant 12 100.0 66.4

Iable 6. Ruck Data Generalization. This table compares the results for the three types
ot Karhunen-Loý,ve transformation to standard backpropagation. For 50 runs
to 100K iterations, best generalization was possible with 12 of 22 nodes, using
Karhunen-Lo;ve mean. Karhunen-LoAve mean with only 9 nodes performed
as well as standard backpropagation.
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Comptrison Results for Roggemann Data _i
IF (Algorithm N Train Test]

Roggemann Backprop 12 100. 84.73
Karhunen-Lo&,e 3 82,0 74.2
Karhunen-Love mean 3 91.4 74.1
Fisher linear 3 90.3 72.9
Most Significant 3 98.2 75.0
Karhunen-Lo.ve 6 95.2 81.3
Karhunen-Lo~ve mean 6 99.2 83.7
Fisher linear 6 94.5 79.4
Most Significant 6 99.4 79.4
Karhunen-Lo6ve 9 99.6 81.3
Karhunen-Lo~ve aiean 9 100.0 83.9
Fisher linear 9 99.4 82.7
Most Significant 9 100.0 84.5
Karhunen-Lo-6ve 12 99.8 91.2
Karhunen-Loý,ve mean 12 100.0 86.2
Fisher linear 12 98.2 84.3
Most Significant 12 100.0 84.7

Table 7. Roggemann Data Generalization. Generalization was better for Karhunen-
Lo~ve and Karhunen-Love mean when the same number of input nodes were
used.

For the Roggemann set, the Karhunen-Lo6ve mean generalized better than the standard

Karhunen-Loeve nets, again the results were mixed.

The results show that a single layer composed of the elements of the eigenvector

rotation matrix can reduce the complexity of the decision space, increase generalization

and improve performance. The full Karhunen-Lo~ve transform seems to be best for

memorization of data with good generalization, whilc the Karhunen-Lo~ve mean transform

reduces the number of nodes required for similar but sub-optimal performance compared

with the Karhunen-Lo~ve.

Fisher linear discriminants performance is similar to that of the Karhunen-Lo~ve

mean, but their use is complicated by the necessity of taking the inverse of the intra-

class matrix. Sometimes the inverse does not e.ist. The additional complexity over the
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Karhunen-Lo6ve mean, plus the possibility of total failure for non-invertible matrices

suggests a limited application except with problems involving pristine data sets.

4.7 Identity Networks

This section will describe the use of a generalized identity network to compute

an input transformation with some of the characteristics of Karhunen-Lovf networks.

The architecture of the identity network is similar to the network shown in Figure 16.

The previous section showed that an input layer which rotates the feature vector into a

better decision space can improve training times with fewer backpropagation nodes. The

Karhunen-Lo;ve nets, which were based on eigenvectors, do have a few problems which

might be solved using neural network training techniques as well. The major problem

with the Karhunen-LoA-vc networks is that the computation of eigenvectors requires the

inverse of what can be a large matrix. Neural network techniques allow iterative learning

to replace the matrix inversion. Two methods will be presented: Identity(12, 31 ) networks

and Gram-Schmidt networks, Both methods work the same as before. The only difference

is the method used to determine the weight matrix A. Both networks are referred to as

identity networks because training the weights begins by forcing the network to learn a

lower dimensional representation of the data.

Identity classification networks train in stages. First a multilayer network is trained

with the input also being the desired output. A single hidden layer is normally used. Once

the network can faithfully reproduce the input vectors, the output layer of weights are

discarded. The input weights -%re then used as a preprocessing layer to feed another type

of network. This provides an input layer to a classification network (like backprop) with

a smaller feature vector.

Using a network as desc.ibed in Figure 16, identity netwcrks relax the requirement

on the A matrix (weights) presented in equations 13 and 15. No requirement is made that

A be invertible, or orthogonal. The only requirement is that:
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Y=AX

fh(Y)B = ,X. (23)

Equation 23 says that the first layer of weights (A ) times a random X generates an

activation vector Y. Next, a sigmoid of Y is multiplied times a matrix B and an estimate

of X is generated.

If the dimensionality of 'Y is less than X, and X can be reconstructed to the desired

accuracy, then the network has discovered a lower dimensional representation for X.

Because A and B are weight matrices and Y is the output of the first layer, A, B, and Y

can be determined by training a network using backpropagation such that X is both the

input and the desired output.

The training for an identity network is performed in two phases. First the network

is trained to reproduce the original training vectors. After the input vectors can be

reconstructed to the desired accuracy, the first layer training is turned off and the output

is used for the input to another feedforward network. After the first network is trained,

training is stopped on the first layer. The output of the first hidden layer (Y) is fed to

a (different) two layer backpropagation (or any feedforward) network. The procedure

was tested against both the Ruck and Roggemann data sets, under the same conditions as

before, in section 4.6. Training two networks doubles the number of network parameters.

One question is how long should the identity layer be trained? A number of stopping

points were tried, from very short (5000 iterations) to very long(100,000 iterations). For

the result reported in the next section, a relatively short training time was selected. Very

little change was noticed in the overall speed of convergence and the identity error after a

few thousand iterations. For that reason, the identity layer of the network was trained for

only 5000 iterations.
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Identity vs Backpropagation: Ruck Data
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Figure 27. Ruck Data Using Identity Networks. The networks were unable to achieve
the accuracy of the Karhunen-Loilve networks. Still the results trained up to
80 percent with only six of 22 nodes.
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Identity vs Backpropagation:Roggemann Data
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4.8 Gram-Schmidt Type Networks

The Karhunen-Love networks suggest that training is faster if the input features

are orthogonal. This section will present the use of a Gram-Schmidt type i'etwork,

which computes an approximately orthogonal set of weights between the input and the

backpropagation network. The output of the Gram-Schmidt layer provides a projection

of each input vector onto a weight vector. Piopagation of the input to the output of the

Gram-Schmidt layer is a vector dot product of the input vector and the Gram-Schmidt

weight vector.

The modification to the identity networks is simple. When the weight update is

made to the first hidden node, an amount is subtracted from the rest of the nodes' weights

to ensure that every weight update is perpendicular to th- direction from every other nodes

weight vector. Finding the correct amount to subtract is a result of the Gram-Schmidt

process. The process requires three steps. First compute the weight updates A ,1ij

(momentum matrix) using the identity network. Next orthogonalize and normalize the

momentum matrix using the Gram-Schmidt process ((19)) described by Equation 24. Add

the orthonormal weight updates to the previous weight vectors, then repeat the process

with the weight matrix. To make the computation, let the weight and momentum matrix 117

be represented as a set of vectors 01, 912, 033, ... , ,3,. Let the orthogonal vectors associated

with 3•k the weights matrix and momentum matrix, ak be computed by

am,+, = 13r.+1- 0. 1 (24)
k=1lia

and I < m < n. Because the vector computed from 24 are orthogonal but not orthonormal,

then each of the individual weight vectors (a,) must be normalized.

The results are shcwn in Figures 29 and 30.

Because the Identity network, as presented by Cottrell and Oja, didn't perform as

well as expected, a modification was made to the architecture. The modification brought

the performance of the Gram-Schmidt network level of performance up to the level of the
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Granmm-Schmidt Identity vs Backpropagation: Ruck Data
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Gromm-Schmidi Identity vs Backpropagation:Roggemann Data
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Figure 30. Roggemann Data Using Gram-Schmidt Identity Network.
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Compmius of Rcs-
File jAlgorithm %-odes Train Tesi
Ruck I Baprop 12 100 947

kledmitv 3 662 436
Gram-Schmidt 3 638 436
Normalized Gram-Schmidt 3 83 3 557
Identity 6 76 2 43 b
Gram-Schmidt 6 75-6 4316
Normalized Gram-Schmidt 6 93.4 .57
Identity 9 78.4 44.1
Gram-Schmidt 9 78.2 44.1
Nomalized Gram-Schmidt 9 94.5 50.3
Identity 12 80.9 42.0
Gram-Schmidt 12 81.4 42.0
Normalized Gram-Schmidt 12 94.7 47.6

Roggemann Backprop 12 100.0 84.7
Identity 3 76.7 65.5
Gram-Schmidt 3 75.7 63.2
Normalized Gram-Schmidt 3 86.0 62.9
Identity 6 81.6 68.5
Gram-Schmidt 6 83.3 71.8
Normalized Gram-Schmidt 6 94.3 68.1
Identity 9 83.7 69.9
Gram-Schmidt 9 83.4 67.1
Normalized Gram-Schmidt 9 96.7 66.2
Identity 12 84.7 70.1
Gram-Schmidt 12 85.6 67.1
Normalized Gram-Schmidt 12 97.2 98.6

Table 8. Performance of the Gram-Schmidt network was similar to the Identity network.
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Karhunen-Lo•ve networks. The change was to add a processing layer between the identity

layer and the backpropagation layer. That layer performed a statistical normalization of

the input to the backpropagation network. The results are shown in Figures 31 and 33.

4.9 Conclusions

This chapter has discussed the use of several techniques to reduce the size of i he

input feature vector. First an empirical metric was presented to determine which input

features were most useful in determining classification. The tests showed that the saliency

of a node or feature can be determined by comparing the magnitude of the attached weight

vectors, instead of an exhaustive search of the weight space.

Next a means to r'x.uce the size of the input space using linear combinations of the

input features was developed using eigenvectors and the discrete Karhunen-Lo~ve trans-

form. The Karhunen-LoAve transform was implemented in a neural network architecture.

Three weans were used to determine the best rotation matrix (weights): Karhunen-Loive,

Karhunen-Loove mean and Fisher linear discriminants. Each of the three methods held

advantages .. ider different conditions. Karhunen-Loi.ve mean worked the best for data

sets with inconsistent data. Inconsistent data, data which possibly contains incorrectly

labeled exemplars, can increase entries of the covariance matrix. The Karhunen-Lo~ve

layer rotates the data in a direction of maximum variance. By reducing the variance con-

tribution of inconsistent exemplars, the Karhunen-Lo~ve mean produced slightly better

results, for the data under consideration. Fisher linear discriminant networks did not show

enough performance improvement to justify the additional computation expense.

Using an identity network, improvements on the Karhunen-Lo~ve architecture were

developed which used ANN learning techniques to set the weights. First attempts to

implement these networks did not perform as well as directly calculating the weight

matrix using the eigenvalues. The performance was improved by adding an additional

layer of processing to statistically normalize the output of the identity layer.

81



Normalized Identity vs Backpropagation: Ruck Data
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Figure 31. Ruck Data Using Normalized Identity Network. Normalization of the output
of the Identity network significantly improves performance of the network.
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Normalized Identity vs Backpropagation: Roggemann Data
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Figure 32. Roggemann Data Using Normalized Identity Network.
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No~rmalized Grainm-Schmidt vs iBackpropagation: Ruck Data
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Figure 33. Ruck Data Using Normalized Gram-Schmidt Network.
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Normalized Gramm-Scurridt vs Backpropagation: Roggemann Data
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Figure 34. Roggemann Data Using Normalized Giam-Schmidt Network.
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The next chapter discusses an implementation of the generalized neural network to

perform image segmentation on a set of sequential images for target tracking.

86



V Generalized Neural Networks for Image Segmentation and Tracking

5.1 Introduction.

This chapter will discuss use of generalized neural networks for an image segmen-

tation and tracking problem. The tracking problem, finding high-valued fixed targets in a

cluttered background, can be solved using a scanning window architecture with a neural

network classifier.

The scanning receptive field method is compared with classical segmentation tech-

niques on two types of infrared imagery. The data sets include sequential imagery of

high-valued fixed targets like dams, runways and power plants, and multiple targets of

tanks, trucks and jeeps in a cluttered background. This architecture is presented as a novel

means to perform the first level of hierarchical vision analysis. The scanning window

method is compared to conventional techniques for segmenting infrared imagery, such as

the histogram concavity methods, and Gabor filter thresholding(34, 2).

To enable neural network analysis for imagery, the NeuralGraphics system was

augmented to include imagery input and output. Although the user interface was modified

to meet the requirement for building exemplar sets and importing sequential imagery, the

underlying software uses the same learning and propagation modules as the NeuralGraphics

package described in Appendix A.

This chapter will introduce a classical segmentation problem to illustrate the prob-

lems of cluttered data segmentation. Following that is a brief review of previous methods

for segmentation. Next, a comparison of techniques will be presented on several problems

to show the advantages of each. Finally, the solution to a problem in segmentation and

tracking will be be given which uses a simulation of the scanning window architecture.
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5.2 Image Segmentation.

Segmentation is an intermediate step between detection and classification. The exact

scope of the process in not well defined. Providing a complete definition for segmentation

is difficult as the definition is dependent on the problem's final objective.

Subjective comparison of methods is also difficult for the same reason. Specifying

a segmented image as good or bad is related to the type of targets and final objective. In

practice, good segmentation is good enough when the segmented image can be passed along

on to the next stage of the process, usually classification. For that reason, the problem

selected to test the segmentation process for this experiment includes a conclusion or

measurable objective.

The objective is to maintain an aim point on the target in a reasonable place.

The objective of the segmentation phase is to label each pixel into one of several

classes. Consider the images in Figure 35. The segmentations shown are produced by the

scanning window method. The method (presented in detail in Section 5.5) partitions each

image pixel into one of two classes.

The problems presented in this section require segmented images for target tracking.

For tracking and targeting purposes, two classes are sufficient. The two classes for

this problem are target and non-target'. Each image in the figure represents a classic

segmentation problem. The background is represented by one type of texture, while the

target pattern is represented by another. In the figure, there are three textures shown on

the left. The first texture is produced by varying the density of the black dots. The second

overlays a region of circles on a background of crosses. The final example uses crosses to

represent the background, and circles to represent the targets. The image on the right is

the segmented image. None of these textures are easily discriminated by pixel intensity.

The holes and ragged edges of the segmentation demonstrate how many of the

regions associated with the target class have characteristics of the background class. These

'The NeuralGraphics system software limit is 256 separate classes, which is enough for most problems.
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Figur a 35. Classic Texture Segmentation. The images on the left are images composedof two types of textures. The first was constructo.d by placing random dots
over the image. In one area of the image the density of dots was doubled.

The second image overlays a distribution of crosses with a region of circles.

The final image has a region of randomldy distributed circles surrounded by

a distribution of crosses. What makes these images difficult to segment is

the fact that all pixels have only one of two values for intensity. Single
pixel intensity provides no information to the segmenter. The images were
segmented using the techniques described in Section 5.5 and displayed on the
right.
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holes demonstrate one of the greatest difficulties in segmenting cluttered images, illusory

contours. The segmentation isn't wrong, but in fact is more correct than our perception.

The perceived boundary of the region is an illusory contout, Illusory contours are probably

the most difficult problem in cluttered background object segmentation, because they don't

really exist in the image intensity information.

Biological image processing systems perform additional computations to associate

these regions with the target class. Computing sharp edges for the textures, when no sharp

edges exist, is difficult in machire vision systemts. 2

The targeting method presented here avoids searching for illusory contours. Instead

of finding fixed edges, the scanning window method finds regions or clusters with a high

density of target pixels. For targeting, an aim point is associated with the centroid of a

region, elimirating the need to find fixed edges. Since the segmented image is made up of

either zeros or ones, crude blob finders are easily implemented, as presented in Section 5.5.

The following sections will discuss previous efforts at image segmentation using

both histograin and Gabor filter methods for gray scale imagery. First, several images from

the Night Vision Laboratories are segmented using each of the three techniques mentioned

above. Next, imagery collected for the Autonomously Guided Conventional Weapons

(AGCW) program is segmented with the histogram method and the scanning window

method.

5.3 Segmentation using Self-Organization

Learning paradigms can be divided into two broad categories, tutored and self-

organizing. Tutored learning, like backpropagation, assumes that each piece of learning

data has a label associated with it. The label is used to calculate the error terms for

2Placing an object boundary across an illusory contour has been the subject of many studies. In
particular, some of the Grossberg Boundary Contour System (BCS)(15) work shows promise for filling in
illusory contours. Still, these processes are computationally intensive. By limiting the area of interest the
scanning window techniques allow conventional boundary filling methods to be implemented over much
smaller regions in the scene.
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training the weights. Self-organization doesn't use labels for the learning process but

assumes that the data contains an underlying structure which the network can discover.

The learning procedure attempts to cluster the data into a finite number of classes. The

following experiment attempts to cluster different regions of an image into a small number

of classes.

In Figure 37 the segmented image shows the result of a correlation of the image with

a single point in the image. This technique is the basis for correlation tracking. The point

with the highest correlation is used for tracking. The correlation image is a measure of how

close (in decision space) every point in the image is to the target window. A threshold was

set to show only pixels above specific values. By selecting a point that contains cultural

items, the hope was to threshold out regions which contained other cultural items. The

segmentation did do that, but a more accurate interpretation might be that the procedure

segmented objects with vertical and horizontal edges. The same procedure could be

implemented by selecting several examples or templates and establishing the class of a

pixel by finding the closest templaie and assigning the pixel to that class. Kohonen et al

(25, 18) demonstrated a self-organization method which allows the network to find its own

bcst templates. This technique was combined with the scanning receptive field method to

implement a segmentation algorithm.

Self-organization was tested against the image shown in Figure 36. The objective

was to organize the data into seven different types of regions using RBF's. The process

starts by selecting 100 arbitrary points in the image and creates composite spectral filters

using Fourier and Gabor components. Using a Kohonen like neural network, the image is

segmented into the seven best spectral representations of the image at single points.

These methods can be used to classify large regions in the image which share

common characteristics such as fields, forests, bodies of water, etc. The object is to

identify regions with cultural objects. Cultural items tend to show up in areas with erratic

and diverse spectral content.
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Figure 36. Gross segmentation by Radial Basis Function. The :mage in the upper right
has been segmented into the seven be.st classes of" texture using RBFs. The

image in the lower right shows the sample points used to train the. image.

5.4 Histogram and Gabor Filter Segmentation.

Most target segmentation and detection methods depend upon heuristic algorithms.

Heuristic methods are based on using a set of filters and thresholds. Threshold criterion

and filter components are determined by trial and error or a priori knowledge of the data set.

Two examples of heuristic segmentation techniques include histogram concavity analysis

and Gabor filter threshoiding.

Figure 38 illustrates the histogram concavity r ethod. By placing the classification

threshold between the two peaks of the histogram, each pixel in the image can be classified

as being above the threshold or below the threshold. Being above or below the threshold

discriminates between class one or class two. Figure 38 shows the histogram used to

segment the image in Figure 44 which illustrates intensihy thresholding for an image of a

runway.

Previous infrared segmentation(34, 2) efforts have used thresholding and filtering
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Training image

Figure 37. Object segmentation using Gabor filter correlation. A single window is
correlated with the image. The filtered image is thresholded and displayed in
the top window. The image in the lower right is the original.
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Figure 38. Histogram Concavity Method.

techniques to partition pixels into the two classes. Roggemann (34) was able to segment

mobile targets from infrared imagery by examining the histogram of the pixel data. He sug-

gests that the histogram for the class of targets under consideration is bi-modal. Consider

the histogram of the image in Figure 39, the histogram window shows a weakly bi-modal

distribution. To segment the image, the two intensity peaks are found and a threshold is

set between them. The three segmented images indicate three possible threshold levels

between the two peaks. Notice that the total target energy is small compared to the total

background energy. Each level is a legitimate choice for the threshold. The first uses the

left inside peak. The next centers the threshold between the peaks. The final image uses

the point right inside of the peak.

These images illustrate an important point about thresholding. Thresholding is an

intelligent process. It requires a decision based on what makes the final results look the

best. You can't tell what will look the best until after it has been tried.

Segmenting an image using Gabor filtering is similar to the scanning window tech-

niqLue. The image is filtered with several spectral filters. The user must select the filters.

The output of the filters are summed and a threshold is applied. Figure 40 illustrates how

Gabor filters could be implemented as a scarning window architecture. Ayer used FFT
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Figure 39. Histogram Concavity Segmentation. Segmentation by histogram is an adap-
tive thresholding process. The figure shows the three thresholds used to
segment the image. Setting the threshold at 56 was selected by finding the
first positive increase moving across the histogram right to left between the
two energy peaks. Setting the threshold at 11]0 was determined by finding the

first positive increase moving left to right. A threshold of 76 was determined
by splitting the difference between the two peaks.

95



convolutions to construct the output image, which is computationally equivalent(2).

Ayer was able to segment the targets from the background using a tailored Gabor

filter. The components of the filter were determined by trial and error. After filtering,

the resulting image was put through a threshold filter to separate between the target and

non-target. The threshold was selected by visual inspection.

Output ImageSThreshold sum.

weights -'- ' I-

FIR or Gabor Filter ComponentsS~selected by user.

Input Image

Figvre 40. Gabor Filter Segmenting Using a Scanning Window.

Roggermann's result is significant because the method is not heuristic. The drawback

is that the method is limited to a narrow class of images: those with bi-modal histograms.

The Ayer method doesn't require a bi-modal intensity distribution and should be able

to segment cluttered images 3 where the image target pixels demonstrate uniform texture

over the target regions. Unfortunately, finding the correct thresholds and filter spectral

components must be heuristic without some type of self-leamirg system. Adding a neural

3Ayer uses the same data set as Roggemann.
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network front end allows the thresholds and filter components to be determined frorn the

training data.

These algorithms are limited by characteristics of the image, in particular the dis-

jointness of the region to be learned. Neural network segmentation may overcome some

of these problems, using a scanning window architecture.

The scanning window approach goes beyond the previous methods by allowing the

system to select the appropriate filters and threshold values based on the nature of the

training samples. The training samples are selected by the system operator. The operator

builds a training set based on representative samples (windows) of the various classes.

The samaples are processed through a bank of spectral filters. The output is fed to a neural

network model and trained to respond to the classes designated by the traiping set. The

system is in fact building custom textons(2 1) to distinguish between textures based on

spectral correlation. Also classification is made differentiating between combinations of

textures.

5.5 The Scanning Window Architecture.

The scanning window architecture for image segmentation is based on the fact that

classification cannot be determined from a single pixel, but is based on the pixels in the

local neighborhood around the pixel in question. Histogram and threshold/filter techniques

usually compare each pixel to every other pixel in the image.

Two sets of data are considered in this section: mobile tactical targets taken by the

Night Vision Laboratories(NVL) (34) and sequential target approach imagery from the

Autonomously Guided Conventional Weapons Program(AGCW). For the NVL laboratory

data, the actual contours are important, as the next process will be to extract features. For

the AGCW data the silhouette is less important than the centroid. For that reason exact

distinction between detection, segmentation and classification is sometimes fuzzy.

Pixels for purposes of target identification are either background or target. Further

classification, (for example, is the target a tank, truck or jeep) need only consider pixels
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classified as part of the target.

The NVL data are a set of single images of tanks, trucks, jeeps and target boards

against a slightly cluttered background. The AGCW data are sequential images of high-

value fixed tactical targets. The imagery was collected during simulated bombing runs

against high-valued fixed targets. Examples of these targets include bridges, dams, airport

ruiaways, and power stations, etc.

Using high-value fixed targets reduces the complexity of the problem a little, because

(usually) only one target exists in the field of view. The solution to the tracking problem

lies in following the centroid of the target pixels.

5.5.1 Training the Neural Network Figure 41 illustrates the scanning window

segmentation method. The method is based on the technique of comparing the character-

istic of one class of objects (targets) with another (background).

The first step in the process is to select representative windows from an image (or

set of images) together with a defined class assignment. A mouse device is used to select

points in the image. As the operator selects representative samples, the designated class is

stored with the sample.

The next steps may be considered data preprocessing but as shown in Figure 41 can

be implemented in a neural network architecture. The neural network acts like a blackbox,

which when presented with a window (of pixels) centered at a specific pixel, assigns an

output class to that pixel.

The preprocessing begins with a spectral decomposition of the input window. To

preserve shift invariance, only the magnitude of the spectral component is used in the

feature vector. Also, since the feature vector is to be propagated through a neural network,

each component should have approximately the same dynamic range. For that reason, the

feature vectors were normalized across each spectral component. This adjustment, called

statistical normalization, prevents one single component from dominating the training.

Training on typical images tends to be dominated by the D.C. intensity. For segmenting
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Figure 41. Training in the Scanning Window Architecture.
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images, the D.C. value is certainly important, but the D.C. magnitude can be several orders

of magnitude above the next highest components. Statistical normalization allows each

spectral component to affect the weight updates equally. After extracting statistically

normalized magnitude components for each exemplar window, the network is ready for

training.

MadIMumM loal
-<demakyotme Ipuxels

Output Image

Backpropagation

weight = mei/sdi • ' Statistical

weight = -I /ai• W Normalization

S~FIR or Gabor Filters

Figure 42. Scanning Window Architecture Image Propagation.

Using the training samples, the neural network is trained using the specified class

associated with each training vector. A number of network methods were tried, all with

about equal success. The scanning receptor field was very robust to variation in the network

architecture. For each image approximately 200 training samples were selected. A net
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with 15 nodes in the hidden layer was used and the training algorithm was backpropagation

with momentum.

The net was trained until between 98 and 100 percent accuracy was obtained on the

training data. This usually took about 10,000 training iterations. One iteration means to

present one exemplar to the input and backpropagation of the error through the network.

The results are shown in Figures 47 through 49.

The flexibility of the method comes from the neural networks ability to naturally

overcome what Valiant(49) calls the disjoint learning regions problem. Disjoint learning

regions are defined to occur when two distinctly different textures in an image represent

the same class of object. Consider an image with a tri-modal histogram, if one class were

represented by the two outside peaks, with another class represented by the center peak, the

classification would always be at least half wrong, using the histogram concavity method.

Using an intensity based classification scheme, the scanning window with a neural network

classifier would estimate a threshold for intensity, then fix a discriminant function between

the estimates.

The layers perform preprocessing, output function mapping, and class estimation.

The two preprocessing layers perform a spectral decomposition, and a statistical adjust-

ment. The remainder of the architecture consists of a traditional neural network.

5.5.2 Target Detection and Segmentation. Figure 43 shows several mobile targets

in a slightly cluttered background. The imagery is taken from an infrared sensor. Because

of the engine heat, they appear hotter than their background; so segmentation based on

histogram techniques alone is straightforward. Unfortunately, the second intensity peak in

the histogram provides a broad choice for the intensity threshold level.

To compare histogram concavity, Gabor segmentation and the scanning window

method,f1fffffffffffffff the same image was segmented three times. In Figure 43 the first

image segmented with histogram concavity would probably be considered the best. The

image was segmented visually to give the best presentation. The last image in Figure 39
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Night Vision Lab
Image Set

Roggemann Histogram Method

Ayer Gabor Filter and Threshold Method

Scanning Wirdow Neural Networf< Segmentation

Figure 43. Comparison of Methods: Night Vision Lab Imagery.
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could also be considered a valid segmentation. The next segmentation, generated by Ayer

with a Gabor filter, was also pretty good. The final segmentation was generated with the

scanning window. The results were still pretty good although the boundaries were not as

clearly defined. However, the scanning window method has an important advantage over

the histogram and Gabor filter methods. The scanning window segmentor learned from

the data, and didn't require intervention to select a threshold or which Gabor filters to use.

The object of the second test is to find the runway infiff a series of images approaching

an airport. The process begins by training a neural network using examples of the runway,

and the surrounding areas. The net is trained with 300 window samples of the image, 150

from each class. After training is complete the image is processed window by window on

other images in the sequence. The result is shown in Figure 44. Notice that the histogram

segmentation method is not as clean as the scanning window method. In the lower left

hand corner of the image, a section of grass had about the same gray scale intensity as the

runway and was misinterpreted. This occurred even though the histogram of the image

was clearly bi-modal.

Images with purely bi-modal histograms usually segment well using histogram

based techniques. However, segmentation performance for the histogram method is not

as flexible as the scanning window neural network method. The reason is that the neural

network takes advantage of the histogram concavity information; it's contained in the

average intensity information presented to the neural ietwork. In addition to the intensity

information, the neural network incarporates other information as well.

The next example demonstrates what happens when there is no clear dip in the

histogram curve to indicated how to threshold the image. The threshold shown in Figure 45

was generated by inspection to produce the best results and ensure a fair comparison.

Images with a uni-modal histogram cannot be segmented easily with histogram

concavity techniques. The scanning window method is more flexible in a number of ways.

Not only can it pick out regions with similar intensity, it can focus in on other types of

textures as well. In Figure 46 the network is trained to recognize edges. The architecture
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[JAGCW Program

Image Data Set

Simple Case

The histogram is clearly bimodal.
With threshold set between the
peaks, the segmented image is
not as accurate as scanning window
method.

Histogram Method

selected
SI manually for

best possible
Jm separation.

Scanning Window Neural Network Segmentation

Figure 44. Comparison of Methods: Bi-modal Histogram.
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A"IAGCW Program

Image Data Set

Cluttered Data

The histogram has only one peak.
so machine estimation of the threshold
would be difficult. Even with
optimum threshold, by visual
inspection, the results are poor.

Histogram Method

Scanning Window Neural Network Segmentation

Here. the dam
contains the
highest density of
target pixels.

Figure 45, Comparison of Methods: Cluttered Data with Uni-modal Histogram.
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suggested by the scanning window approach is versatile enough to segment on a variety

of texti'es as well as intensity.

5.6 High Value Fixed Target Tracking using Neural Networks

The final section will discuss an implementation of the system to track a fixed

target from a mobile platform. A series ,f images was taken on an aerial approach to a

high-value fixed target. Figures 47 and 48 show representative images from a tracking

sequence. The sequence is trained by selecting 200 randomly spaced windows from the

first image. Two hundred samples of the target were taken as well and trained on a two

layer backpropagation network with spectral and statistical preprocessing. 'The network is

used to process the sequences shown in Figures 47 through 49. The tracking results are

shown for several samples from each approach. The figures show four of an eight image

sequence. The network was trained only on the first image.

The tracking points are selected by passing a scanning window ovel the segmented

image. The program calculates the density of target pixels in the window, and the geometric

mean within the window. Forty by forty (pixel) windows were scanned across the image

(360 by 120 pixels) ten pixels at a time. This results in 98 windows with corresponding

densities and target coordinates. The targets were selected as the four windows with the

highest density of target pixels.

The first sensor approach sequence contains eight images, starting with the dam

being barely visible. In the final image, the dam is shown with four targets indicating the

four areas with the highest density of target pixels. The second sensor approach is similar.

The third sensor approach is more difficult, as much of the clutter resembled the dam at

the window size chosen.

Figures 50 and 51 show a much longer sequence of images. The complete sequence

is made up of 439 images. The target is the power plant near the front right of the building.

The sequence is trained on two images, one at the beginning and one at a midpoint.

Because the building behind the power plant is initially easier to detect, it is used as the
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initial aim point. After the power plant comes into view, the focus of the target is changed

to the other building.

5.7 Conclusions

The goal of this experiment was to design a targeting system for an autonomously

guided missile system. That objective was achieved. The system requires little technical

sophistication for mission planning. With only two or three images of the target along the

approach path, the system is able to lock-on the target. The scanning window architecture

offers promise for image segmentation and tracking in machine vision systems. Although

the system was implemented only in simulation, real data is used through-out. The

approach is modeled to take advantage of specialized parallel processing integrated circuits.

The architecture described above could be implemented using neural network integrated

circuits such as INTEL's ETANN device for real time computation of what has been only

simulated here.

The scanning window method is an improvement over previous methods for several

reasons. First, the neural network segmentation is based on multiple criteria. The neural

network combines information from a number of correlation planes to make a discrim-

ination. Because the neural network combines disjoint learning regions, segmentation

can be based on combinations of features. For example, dark and light regions can be

combined into a single classification with medium regions in another. In addition, higher

order harmonic content can be included in the criteria. High second harmonic values from

the scanning window filters are strong indicator, of edges. This type of filtering allows a

segmentation to mimic heuristic rule-based segmentation, without the required analysis.

For example, segmentation can be set to pick out edges of a specific intensity and regions

of a specific intensity range.

Most important is the fact that the process is self-tutoring. The operator need only

select representative windows of each class. The neural network bui!ds up the rules which

define the segmentation scheme. There are few parameters which need to be set by the
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Accuracy: 100.00 Percent on target

Figure 47. Approach on a Hydro-Electric Power Plant(l). The tracker is trained on the
first image, using texture exemplars selecLed by the user. The figure above
shows the subsequent images and the selected target points. Four images out
of a tracking sequence of eight are shown.
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Acracy:l00.00 Percent on target.

Figure 48. Approach on a Hydro-Electric Power Plant(2). Trained as before, user select-
ing sample textures. Four images shown out of a tracking sequence of eight
images.
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Accuracy:81.25 Percent on targe 60008::....... :: ,.:

Figure 49. Approach on a Hydro-Electric Power Plant(3). In these images three targets
out of 16 were not placed on target, still the tracking held to the final image.
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Figure 50. Approach on a Electric Power Plant. These images are part of a longer
sequence of approaching a electric power plant. The image is trained on only
the first image. The tracking algorithm begins by selecting the roof as the
point of focus until a better target comes into view.
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Figure 5 1. Approach on a Electric Power Plant. The top image shows the second training
image. Once the primary target has enough detail to allow segmentation, the
focus is changed to center on the smaller building in front. Using two images
for training, then switching the neural network allows selecting a more precise
target.
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operator.4 The resulting autonomous targeting system requires a minimal amount of expert

system rule based analysis. The approach presenited here learns to recognize targets much

the same way people recognize targets, by seeing examples and being told what they are.

4Except for the normal neural network architecture and learning rates. However, the systems were robust
over a wide range of values.
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VL Conclusions and Recommendations

6.1 Conclusions

A difficulty in working on computer vision problems is that the results are often

compared with science fiction or biological systems. In fiction, anything is possible;

vision technology is taken for granted. Biological vision systems perform so well that

machine vision pales in comparison. The problems which can be solved as a result of this

work may not be impressive until one considers the magnitude of the problem. The system

described here attempted to do with a few hundred interconnected weights what requires

billions of interconnected weights in a biological vision system.

Three contributions are presented in this dissertation. First, an environment for

testing neural network paradigms and problems was developed for general use. Second,

a generalized structure for neural network problem solving was developed and tested

against a number of classification problems. Finally, a segmenting and targeting scheme

was developed using a generalized neural network to track high-value fixed targets through

a sequence of approach images.

The NeuralGraphics system has proven to be a useful and flexible tool for neural

networks analysis on a variety of problems not presented here. The user interface allows

interactive control and monitoring of the network training. Development of the system pro-

vided a number of novel programming techniques for simulating artificial neural networks.

The techniques are discussed in (47).

The generalized neural network window architecture provides an attractive way to

segment targets from cluttered data. The use of Gabor and Fourier spectral filters allows

discrimination on any of the represented correlation planes, whether the correlations come

from Fourier, Gabor or any Wavelet like filter. Use of the spectral magnitude makes the

recognition shift invariant. Adding the neural network allows the spectral filter coefficients

to be combined in a way best suited to discriminate between the background and targets.
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The research included finding ways to reduce the size of the input vectors using

saliency, principal component analysis and identity networks. The weight saliency met-

ric allowed a user to select the best combination of input features. Examination of the

Karhunen-Lo.ve and Identity network showed a means to implement neural networks un-

dei real hardware constraints. Current hardware will often limit the size of the input feature

vector. Many integrated circuits limit the input vectoi to 64 features. Using Karhunen-

Loeve networks, the feature vector was reduced by a factor of three and retained the same

performance. Identity networks eliminated the need for off-line preprocessing the feature

vector. The identity nets were improved upon by adding additional processing layers for

statistical normalization, and also orthogonalization with Gram-Schmidt techniques.

The generalized architecture and the reduced feature vector analysis allowed im-

plementation of a scanning receptive field system for segmenting target from non-target

pixels in sequential data. The tracking mechanism added to the neural network segmenter

was simple but effective. The rough approximation to a blob finder was able to solve the

problem, without the complexity of finding contiguous regions in the segemented images.

Future work might consider adding the element of time to sequential image processing.

Superior performance could have been obtained if the processing rejected transient spatial

noise. Implementation would required only that the targeting mechanism be trained to

recognize that a target pixel would persist over several frames. The algorithms developed

here could be implemented in real time using integrated circuits specifically designed for

neutal network architectures. This resulted in an end-to-end dcsign for a neural network

tracker. The tracker uses neural network architectures not only in the back-end as in

previous work, but for the front-end: segmentation and feature extraction as well.

6.2 Recommendations

The NeuralGraphics development environment was written entirely in the C pro-

gramming language. Since the software was written, C++ has become more popular and

supported as a programming environment. C++ offers constructs which are well suited
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to neural network simulation. Porting the routines which perform the internal network

computations would be a simple matter and would facilitate software maintenance. Since

the programs were written more workstations have incorporated X-window based graphics

using the Motiff widget set. Changing the graphics modules from the SGI based librauies

to X would enhance the portability.

The targeting algorithm was tested using pre-recorded video data. To further examine

neural network for targeting, the video source should be a camera on a movable gimbal

to allow the neural network to provide steering commands. Such a system could be

implemented using a workr ation with a video digitizer. A number of systems provide

vector processing in the forms of digital signal processors as part of the computer system.
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Appendix A. A General Purpose Environment for Neural Network

Simulation

A. I Introduction

This appendix will describe the software environment used to run the neural network

training experiments presented in Chapters III through V. The program, although devel-

oped as a part of the dissertation effort, goes beyond it original purpose. The program can

be found on computer bulletin boards from Finland to Australia. The software has been

used for classroom instruction from Florida to Oklahoma.

This chapter is organized as follows. The first section discusses the purpose of the

environment, lists hardware requirements, and start-up procedures. The next section tells

how to run a network problem, descriptions of how to prepare the input data, controlling

the training and so on. The last section describes several of the demonstrations included in

the program, hybrid nets, Kohonen maps. the traveling salesman problem and a Hopfield

associative memory.

A.2 Getting Started with the NeuralGraphics Environmeni

In order to test and evaluate a number of paradigms and techniques, a neural network

simulator with a graphical interface was constructed. While the system was used as a test

bed for the image segmentation problems, it was constructed with sufficient flexibility

for general research. The NeuralGraphics system is a collection of software tools and

demonstrations that provide graphical displays and allow users to interact with the network

during training. I

The programs ran on a Silicon Graphics 3120, 4D, Personal Iris and IBM PC

compatible computers (with EGA and a math coprocessor). Informatioa specific to the IBM

"Ihe only difference between a demonstration and a tool in this package, is that a demonstration uses a
fixed dat& set.

118



version is contained in the on-li'ne help facility and is documented in the NeuralGraphics

User's Guide (46). The NeuralGraphics workstation system is made up of a neural network

simulator, and an image processing tool. The simulator code allows netwoiks to be tested

based on a user supplied data set, using a variety of paradigms.

Image processing software allows feature vector data sets to be constructed from

gray scales images. Several data sets are supplied with the code. Most of thf. imagery is

taken from the Autonomously Guided Conventional Weapon prugram.

[he system will come up by typing the program name "net" in the appropriate

directory. Older Silicon Graphics (SG) machines need to be in the window Cerver (type
"mex"). 2 The first thing required by the system is setting up the network parameters. A

good set of defaults is provided by the program, so in most cases a carriage return will

suffice (or clicking "done").

For the SG, pick the configure item using the mouse and the right button. The default

values in the boxes can be changed by clicking on the small white circles. Clicking on an

item opens a dialogue w,;-idow to type in the new values.

The system contains several models and demonstrations. The primary systems used

to evaluate user data sets are contained in the feedforward models. These include several

flavors of multi-lay.'r backpropagation and a hybrid3 propagation network. Figure 52

shows the opening menu for the IBM version of the code.

The demonstrations include Kohonen mapping, a neural net solution for the traveling

salesman problem and a Hopfield associative memory.

While all models are not supported for both implementation, (i.e. Silicon Graphics

and IBM) the user interface works about the same for each. Currently, the Silicon Graph-

2Older SG machines allow for running programs with a single window environment. For multiple
windows, the program mex must be run before the net program.

3The present convcntion ith neural network literature is to define a hybrid network as a mix of electronic
and optical technologies. The term is sometimes used to indicate a mix of self-organizing and tutored training
paradigms. The hybrid neural network discussed here refers to the second meaning, a mix of Kohonen and
backpropagation learning.

119



......... ...... .. .. ... ..... .... ................ii ii

4preset paameters Radial Basis Hopfield Ass Mlemoryj
ict o Pldopesaton Function dimox ntA t ss a edoep

• !•: ~Xho o..Ri i • ~n B, ttu Help

A h3rR d Netunrk Trtveling Sflefmrn Tot

Figure 52. The Opening Menu of the PC NeuralGraphics Software.

ics tool does not support Hopfield demonstrations and the IBM does not support Error
Analysis.

Much of the information specific to the IBM implementation is contained in a help

tutorial, one of the menu items. To access the help files, select the menu item Tutorial.

A.3 Running the Feedforward Tools

Several feedforward models are provided that allow up to five layers of weights and

any number of hidden nodes." Only the display limits the number. The user can select

any number of weights and nodes per layer, but only about 50 nodes are displayed. The

network uses dynamic allocation of resources, so every selection forces a trade off. Using

larger net models mean less memory data storage and so on. Trying to allocate too much

4The program allows more, but the display becomes crowded, and the error term is diluted for each
additional layer. Theoretically, Cybenko (7) showed that only two layers are ever required, however the
generalized model uses more.
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Figure 53. A Three Layer Network Display on a Silicon Graphics 3120.
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memory, will cause the program to terminate. An error message will be written to the error

channel explaining the problem.

The first step in using the simulator is to set up the desired network. Several types

are available, which include Multi-layer Feedforward Back propagation of Errors, mixed

propagation rule 5, and Kohonen Mapping.

Both systems prompt the user for setup data, the workstation models require a mouse,

while the IBM version uses the arrow keys. On start-up, the user selects a paradigm or

demonstration with the mouse or arrow keys. Select the net type, then in response to the

prompts, type in the number of nodes (computation units) in each hidden layer.

Request for a weight file can be entered at start-up. If there are no previous files,

enter "r" for random weights to be generated by the program.

A.3.1 The Input Data File. The training file contains all the data for testing and

training the neural network. The training file name is entered at the prompt requesting

data. A training file can be created as a standard ascii file using a standard text editor.

For quick testing, enter the word "edit" for the data file and a "built-in" lotus style editor

allows a file to be created randomly. Sometimes it is easier to modify one of these files

than to start from scratch.

The basic format is show in Figure 56. The first line defines the size of the training

set, test set and the size (width) of the input and output vectors. After that, each exemplar is

listed in order. The first number is an arbitrary integer and is ignored by the program. The

only purpose is to identify the exemplar number. Next list each element of the exemplar

vector x0, xI, x 2 ... x,,-1. The last element is the exemplar class type.

Exemplar class types must be sequential, i.e., 1,2,3,... etc. The first class type must

be one and no numbers can be skipped. Classes can be randomly mixed within the data

file. To allow flex,:bility, very ,'ittle error checking is performed on the input file. An

5Some training rules mix paradigms between layers, using for example backprop on the output layer and
self-organization on the input layer.
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Figure 55. PC Feed forward models screen display
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Data Flil Format:

% rminus sign
• ,. o. indicates vector output

Output2320 20 3 2 class 1 .45.42. 0.1 0.9
13.45.42.1 1 2 5.62.37.1 0.1 0.1
25.62.37.1 23 .628.1. 0.9 0.1
37.28.16.5 1 4 7.28.16 0.9 0.143.4.9A2 i 4 3.34.19.1 0.9 0.143.34.19.1 2 line Input Output

Vectors vectors

40 4.18.5 3.2 2 .18.53., 0.90.1

File with Class outputs File with Vector outputs

Figure 56. Data file formats for class and vector data.

incorrect file can cause the program to appear dead. If this happens use control-C to get

to the extended menu. The class data format is shown in Figure 56. The file number of

the exemplar line represents class membership. The value can be any number from 1-256,

but every class must be represented. For large numbers of classes the output can be binary

encoded. The output of the net then will have more than one node high at any one time.

Class is assigned by setting the output to one if the node is more than a half, and zero if

less than a half. The output is read as a binary code one bit per node.

A.3.2 Function Approximavion. For function approximation, the specific desired

value of a node can be given. This is called vector output, and specified in the parameter

adjustments as one of the output encoding techniques. The value must be between 0.0 and

1.0 unless the function approximation paradigm is used. Function approximation allows

greater values and uses the backpropagation with momentum technique. For function

approximation the only meaningful output is the mean square error between what is

desired and what is actually calculated by the network. In the example files shown in

Figure 56 there are 20 training exemplars and 20 test exemplars, three inputs, and two

outputs in vector format (the minus sign). The number of hidden units is set elsewhere in
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the program (at runtime on in the defaults setup file).

It should be pointed out that the program looks at function approximation in two

manners. The first uses any appropriate paradigm. The output is specified using a limited

number of output vectors. And, the output vector for specific class is always the same.

With this limitation, it makes sense to calculate a percent correct. For the function

approximation paradigms, input vectors are. not associate-d with a class. Consequently, the

only measure of performance is the total error for the given data set.

Two files for testing and demonstration are included in the IBM package. These are:

xor.dat and test.dat. The silicon graphics version offers more in the data directory.

The system uses dynamic memory allocation, so the size of the input and output

vectors, and the number of hidden nodes is not strictly limited. The screen display shows

the amount of memory left at run time. Should you try to allocated more memory than is

available, the program will tell you so, and exit.

A.3.3 Interaction With the Network The mainframe version interacts with the

user in two ways: a mouse for graphical versions, and a pull down menu for the terminal

version. The terminal version, usually used for background and batch jobs, allows access

to a user control menu by hitting a control -C.

The three mouse buttons are used as follows:

* Right: Selection of top menu items.

* Left: Removes/replaces selected Nodes.

9 Middle: Magnification of the screen display.

The screen displays information about the progress of the network as it trains. The

top line allows menu selections by clicking the right mouse button as follows:

e HALT: Toggles a halt action (freezes display).
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* HELP: Displays a help file.

* SHOW: Displays node values.

* QUIT: Exits program.

* FAST: Toggles display update between one to pre-set value.

* TRAIN: Toggles training on and off.

* DISPLAY: Displays error surfaces for selected nodes. Only works for two input

files.

* MENU: Pulls up the paradigms setup menu. Only effects items that make sense

to change after the network configuration has been fixed, for example the display

interval.

* SCN DMP: Dumps screen display to a file. (Utah RLE format);

The IBM version menus are activated by pressing the first letter of the menu item

listed on the top line of the display. See Figure 55.

A.3.3.1 Error Measurernents. Several error measurements are built into the

system. The error history is a graph that displays the progress of the network as training

progresses. Also, after each display cycle, a tabulation is made to determine the percent

correct for both the training set and the test set. If the output of the network is within 20

percent of the desired value for every node, a counter is increniented for the Right indicator.

If the highest output corresponds to the correct node for that test case the Good counter

is incremented. These values are displayed for the training and test sets as a percentage

correct.

A.3.4 Statistics and Runtime Files(SG only)). Statistical and historical data are

kept on each run in a file called data-stats. This is a print out of the accuracy and error

for the training and test set for each display period, When the stopping point is reached,

the program re-initializes and starts over. A running average is kept for the number of

127



runs in a file called data.stats-old. The stopping point and the number of runs, are set in

the initial configuration menu, or using the setup file (see Section A.3.6) Another useful

file is called item.report. The test data is computed at each display cycle and the result is

shown in a list for every test exemplar. The list shows the exemplar number, the class and

the what the net estimated for that item.

A.3.5 Additional Features. The feedforward models offer a few special features.

"* Extended Menu. The net program, in terminal mode, allows user control with an

extended menu. The control-C invokes the user menu where several parameters

can be adjusted by using the extended menu. Weight files can be saved or restored,

displays can be adjusted and internal values can be displayed.

"* Neural Net Probe. When the input is exactly two entries wide, a neural network

O-scope kicks in which displays the response of a node over the total range of the

input.

"* Node Elimination. Placing the cursor over a node and pressing the Left Mouse

button, removes the node and all connected weights from the network.

"* Magnification Window. Placing the cursor on any point in the screen can blow up

that region for examination. This capability is used to examine the value of the

weight near the node terminals.

"* Hard Copy. Network progress is also tracked in a file called data-stats. Any

orderly termination of the program will allow the file to print training graphs using

Mathematica.

A.3.6 The Setup File. The default setup is kept in a special file called setup.fil.

When the program starts up the file is read and all default values are taken from this file.

See Figure 58.

ihe first line shows the number of layers, followed by the the number of nodes in

each hidden layer. The next line is the weight file to be loaded. Normally weights are
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randomly set by using "random". random is a keyword which sets the weights between

-0.5 and 0.5.

The next item listed is the amount of noise added to each vector. The amount of

noise added to each feature of the input vector is computed by taking a random variable in

the range [-1,1] and multiplying it by this entry each time the input layer is filled.

The next item is the training paradigm number. This number is the paradigms

number taken for the paradigm selection list in the menus.

Next the specified data file is entered. This is the name of a data file prepared as

illustrated is section A.3.1

The next number specifies the preprocessing method. Sometimes the training is

faster if the data is preprocessed. The program provides several preprocessing methods.

For the specific numbers, look at the function normalizeo, in the file normal.c. The

algorithms are explained there as well. To leave data alone, use zero, to normalize,

statistically use one. Other functions were implemented for specific research questions,

and include Fisher linear discridminants, and Karhunen-Lo~ve with several variations. The

utility of these functions is examined in chapter IV.

The next line tells the program where to store the statistical data. This can be useful

when running in the background.

The final few lines lines are used to run programs in batch or background mode.

The first number on the line specifies the display update increment. In the background

program mode, this number is used to determine when to do all the error calculations. The

next number specifies when to stop, and the last number denotes the number of runs.

A.3. 7 Running Neural Graphics in the Background. While trying to run the Neural

Graphic software without any graphics or screen displays may be like reading "The

Collected Works of Picasso", in braille. It is possible, but the main points are missed. The

terminal version of the program allows two command line parameters for this purpose.
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The flag -bg turns off all graphics. The background mode flag allows the program

to be run as a background job in the normal Unix manner. Just use the command line

net -bg & . The program will run using the configuration specified by the setup file

setup.fil. If a user wants to run several jobs consecutively, a different setup.fil is needed

for each run. Consecutive jobs with different configurations can be run by using a script

file. All that is necessary, is to use the flag -setup followed by a filename. Instead of using

the default setup configuration in setup.fil, the user supplied name is used. Consequently,

the statistical information is saved using the name specified in the setup file. If jobs are

running concurrently, each job should be processed in a different directory, otherwise

temporary files with the same names will clash.

Also, a popular method for analyzing a data set is called hold-one-out. The network

is trained on all data points except one. When training is complete, the one held out

is processed through the net. The network is retrained until all exemplars have been

processed. The results are stored in a file called hold-one-out. To invoke the process in

batch mode use a line parameter "-hold".

In the graphics program the option is available under the output type, under data

class types in the window menu. Hold one out is a variation on the CLASS data type.

A.4 Other Models and Demonstrations

A.4.1 Hybrid Propagation. From the users point of view, this paradigm works the

same as the Backprop model. The difference is in the convergence time for various types of

problems. Backprop has difficulty training when decision regions are very close together,

but works well for many distinct and disjoint decision regions. The hybrid propagation

network works well for several disjoint regions that are spaced closely together as long as

the number of first layer nodes is a few more than the number of distinct decision regions.

Hybrid propagation uses Kohonen self-organization on the input layer followed by a two

layer backprop for classification.

Hybrid propagation is used in this package as a conglomeration of hybrid type
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networks such as ART2 (4) and Counterpropagatien (18). Hybrid propagation requires

only a conscience parameter to be adjusted while ART and Counterpropagation require

several parameters to be set exactly. While ART2 is generally considered an unsupervised

method, it becomes supervised during the calibration process, where labels are associated

with each output node.

A.4.2 Kohonen Self-Organizing Maps. Kohonen maps organize data according

to the distribution of the training data. Neural Graphics provides a demonstration that

graphically illustrates the distribution of the Kohonen nodes with different distributions of

input data.

The first selection allows the training data to be distributed across a square, a triangle

or a cross. The second allows the input in the x and y directions to be distributed according

to a uniform, Gaussian or a chi-square probability function.

The display has three maps: a map of the input data(upper right), a Kohonen map

(lower right) and a graphical display of the distribution of the Kohonen nodes. The input

data is colored red and yellow to form two arbitrary input classes. The class information

is not used in the training of the net. It is only provided to demonstrate the grouping of the

Kohonen nodes for data with similar characteristics.

A.4.3 The Traveling Salesman Problem. The traveling salesman problem is a

classic example of an Non-polynomial (NP) complete problem. This demonstration solves

a traveling salesman problem from either a randomly generated list of cities or a specified

file.

The input file defaults to sales.dat. The file consists of a number of cities, the word

'list' or 'random', a problem number and a list of x,y locations of the cities.

The display shows the current location of the nodes with interconnecting lines, the

total length of the tour, the current number of nodes, and the current city being evaluated.
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A.4.4 Hopfield Associative Memory. The Hopfield associative memory model

accepts a user file. The first line of the file contains three pieces of information. The first

value, as with the other models is the number of exemplars. The second and third relate to

the display only. These are the width of each exemplar followed by the height respectively.

On the next line the patterns follow. First comes an unused pattern number. After that

each bit of the exemplar pattern is listed 0 for pixel off, 1 for pixel on.

The Hopfield net treats each exemplar as a single binary word, the height and width

are for the benefit of the user only. The package provides a sample input file called

"hop3.dat".

The Hopfield network is an associative memory. Several patterns are stored in a

set of weights. A pattern is selected, then corrupted with noise randomly inverting bits

in the image plane. A Hopfield uses only binary patterns. The image is iterated through

the network feeding the output of the net back on itself. The result is hopefully, that the

pattern will converge to a noise free pattern of the closest match of the input exemplar.

Two things can effect convergence. One is the number of patterns stored in the network

and the second is the amount of noise added to the exemplar pattern. A third consideration

is the Hamming distance between exemplars, obviously if two exemplars are very close

to each other, small amounts of noise can confuse the network. The rule of thumb is .15

stored images per bit in the pattern. These routines seem to work only for much smaller

numbers of exemplar sets.

A.5 Conclusion

The NeuralGraphic software package provides a simple interface for testing the

viability of using neural networks. Applications and problems that arise in other areas of

study may be tested quickly without having to write primitive 1/0 and display routines. The

modular design allows rapid prototyping of novel preprocessing and learning techniques.

Neural Graphics is first a graphics program. The graphic design allows simple presentation

of a large amount of information. While the software package was written to support only
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this dissertation effort, additional effort was put into the user interface to make it more of

general purpose tool than strictly research software.
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Figure. 57. A Hybrid Propagation Network
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random
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Figure 58. Example Setup File.

134



0.0 0.1 0.2 0.3 0.4 0.5 0.4 w?.M 0.0 0..
0.0 ----

0.1

0.2

0.3

0.4

Q.0

0.4

0.7

0 .-

Stop 4289
Alpha 0.029
Ple ih1ri I Kohonen Map

Figure 59. The Kchonen Self-Organizing Map
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Figure 60. The Traveling Salesman Problem
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